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Orientational ordering and chiral symmetry breaking in organic monolayers composed of disklike
mesogenic molecules: Molecular theory and computer simulations
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Orientational ordering of disklike molecules on a flat surface is investigated using a molecular-statistical
theory and Monte-Carlo simulations. The theory is based on the two-dimensional orientational order parameter
for molecules with a threefold symmetry axis, and on a simple model interaction potential which has been
derived taking into consideration only the symmetry of basic molecular structure. The theory reveals three
different anisotropic phases. One of them exactly corresponds to the structure which has recently been ob-
served experimentally in self-assembling monolayers of discotic mesogenic molecules on a pyrolitic graphite
surface. This is a two-dimensional~2D! chiral anisotropic phase composed of nonchiral molecules. The phase
consists of three sublattices with different orientational order. One sublattice is orientationally disordered,
while the other two sublattices are ordered with the same scalar order parameter and different orientations of
the ordering tensor. Both order parameters of the directions of ordering are determined self-consistently by
minimizing the total free energy of the system. The detailed structure of this unusual phase is also confirmed
by the results of Monte Carlo simulations based on the same model interaction potential. The results of the
theory qualitatively explain existing experimental data and also shed some light on the origin of supramolecu-
lar structures observed in 3D columnar phases composed of similar molecules.
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I. INTRODUCTION

Conventional thermotropic liquid crystals are usua
composed of rodlike or disklike molecules which can form
large variety of different phases with orientational and, p
tially, translational order. The simplest liquid crystallin
phase is the nematic phase which exhibits only orientatio
order of the primary molecular axes. Many rodlike m
sogenic molecules also form smectic phases which are c
acterized by one-, two- or even three-dimensional positio
order. In such mesophases, the rodlike molecules are pa
in layers. Disk-shaped molecules, which normally have p
nar rigid cores and flexible chain tails, also form nema
phases as well as columnar phases@1#, where the molecular
cores stack into columns. The most commonly observed
lumnar phases consist of triangular or rectangular array
columns with short-range fluidlike order inside each colu
@2,3#. There exist also highly ordered columnar phases wh
are similar to higher smectic phases and to three-dimensi
plastic crystals@4#. As discussed by Boden@3# and Guillon
@5#, the columns are formed due to an attraction between
flat aromatic cores of the disklike molecules while the flu
ity of the phase is determined by the long flexible cha
attached to the core. In highly ordered phases, this flui
appears to be strongly restricted. It is interesting to note
the strong repulsion between sufficiently long flexible cha
may result in a rather complex structure of some colum
mesophases. This structure may include several differen
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perlattices and spontaneous helical ordering inside the
umns@6,7#.

At the same time little is known about two-dimension
~2D! ordered phases which may be formed by disklike m
ecules on a surface. Such molecules have been observ
form self-assembled monolayers at a liquid-solid interfa
@8,9#. In such monolayers, the molecular disks are paralle
the surface and thus there are no columns. In this case
particular point symmetry of the molecule is expected to
more important for the phase formation and, in general,
molecule cannot be approximated just by an isotropic d
Instead, the existence of a threefold symmetry axis which
normal to the molecular core should explicitly be taken in
account. In particular, such molecules should exhibit 2D a
log of the nematic phase, but with a threefold symmetry a
perpendicular to the surface. In general, such spontaneo
ordered 2D systems provide us with important models
new molecularly designed materials with nanoscale struc
@10#.

Recently, interesting anisotropic phases have been
served in self-assembled monolayers formed by a serie
discotic mesogenic molecules on a pyrolithic graphite s
face @11#. The corresponding disklike molecules used in t
experiment are symmetrically alkoxy-substituted trip
enylenes which possess a threefold symmetry axis per
dicular to the flat core. Using scanning tunneling microsco
Charra and Cousty have observed the emergence of a s
taneously chiral anisotropic phase when increasing the tr
gular aspect ratio of the molecules which is determined
the alkoxy chain length. The schematic structure of this
chiral phase, composed of nonchiral tripod molecules, is p
sented in Fig. 1~StructureB). In this phase, the molecula
centers are located on the sites of a hexagonal lattice bu
the same time, the molecules form three inequivalent su
©2003 The American Physical Society07-1



er
r
s

e
la
e
t

on
on
s
ee

ew
us

ed
y
er,
1
is a

d-

g a
We
ed

ing
be-
nto
lar
and

fer-
ith

ure
ol-
ions
. In
e-
his
of

eld
the
ing
in-
hiral
red
he
od
arks
are

and
ase

e
Th
-
s

tial

M. A. OSIPOV AND J. STELZER PHYSICAL REVIEW E67, 061707 ~2003!
lattices which differ in their orientational order. One sup
lattice is orientationally disordered while the two others a
highly ordered, with antiparallel orientation of the neare
neighbors. The 2D chirality of this phase~see Ref.@12# for a
more detailed discussion of 2D chiral systems! is determined
by the fact that the ordering directions in two superlattic
are not parallel to the axes of the underlying hexagonal
tice formed by molecular centers of mass. These experim
tal results raise a number of interesting questions about
particular intermolecular interactions which may be resp
sible for the formation of 2D chiral phases composed of n
chiral molecules. Recently, these effects have attracted
nificant attention, and a number of chiral textures have b
observed in liquid crystal films@13–15# and Langmuir
monolayers@16–18#.

At present, there is no theoretical description of the n
2D chiral anisotropic phase observed by Charra and Co

FIG. 1. Three distinct orientationally ordered structures form
by tripod molecules located on the sites of a hexagonal lattice.
unit cell is marked by dashed lines. StructureA: homogeneous con
figuration. StructureB: 2D chiral configuration which correspond
to the structure observed by Charra and Cousty. StructureC: frus-
trated honeycomblike structure.
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@11# except for some qualitative analogies with frustrat
triangular Ising nets@11,19#. There exists also an analog
with the 2D nematic ordering. It should be noted, howev
that the triangular~‘‘tripod’’ ! phases presented in Fig.
should be characterized by an order parameter, which
symmetric third-rank tensor~as proposed by Hess@20# for
tetratic fluids!, while nematics are described by a secon
rank tensor order parameter@21#. In this paper, we investi-
gate the ordering of tripod molecules on a surface usin
molecular-statistical theory and computer simulations.
show that the relatively complex 2D chiral phase observ
by Charra and Cousty@11# can be found both in Monte Carlo
simulations and in a mean-field statistical theory, employ
a simple and rather general model interaction potential
tween nonchiral molecules which can be derived taking i
consideration only the symmetry of the basic molecu
structure. We also compare the transition temperatures
the temperature variation of the order parameters for dif
ent superlattices, as obtained from the molecular theory, w
the results of the computer simulations.

The paper is arranged as follows. In Sec. II, the struct
of the orientationally ordered phases formed by tripod m
ecules on a hexagonal lattice is considered and express
for the corresponding tensor order parameter are derived
Sec. III, we derive a model potential of the interaction b
tween tripod molecules with threefold symmetry axes. T
model potential is then used in Monte Carlo simulations
the three distinct tripod phases. In Sec. IV, a mean-fi
theory is developed which describes the transition from
isotropic to the orientationally ordered tripod phase, tak
into consideration the spontaneous formation of three
equivalent superlattices accompanied by spontaneous c
symmetry breaking. The results of this theory are compa
with the simulation data In Sec. V, the expression for t
chiral order parameter for the orientationally ordered trip
phase is derived and discussed. Some concluding rem
including a discussion of the existing experimental data
presented in Sec. VI.

II. ORDER PARAMETER OF THE TRIPOD PHASE

In this section, we derive an expression for the tensor
scalar order parameters of a 2D orientationally ordered ph

d
e

FIG. 2. Coordinates used in modeling the interaction poten
between a pair of tripod molecules.
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ORIENTATIONAL ORDERING AND CHIRAL SYMMETRY . . . PHYSICAL REVIEW E67, 061707 ~2003!
composed of triangular~tripod! molecules. Such a molecul
is schematically represented in Fig. 2. It has three equiva
chains and possesses a threefold symmetry axis perpen
lar to the molecular plane. The homogeneous anisotropic
phase composed of such molecules also possesses a thr
symmetry axis and is characterized by three equivalent m
roscopic directions within the plane, which make an angle
120° with each other. It is interesting to compare the sy
metry of this new tripod phase with that of the familiar 2
nematic phase composed of rodlike molecules. The 2D n
atic phase is characterized by the twofold symmetry axis
as a result there exists only one nonpolar macroscopic d
tion. By contrast, in the 2D tripod phase all three mac
scopic directions are polar.

Now it is possible to derive an expression for the ord
parameter of the tripod phase using this weak analogy w
the 2D nematic phase. The nematic phase is described b
tensor order parameter

Qab5SS nanb2
1

3
dabD , ~1!

whereS is the scalar order parameter which characterizes
degree of ordering andn is the unit-vector director which
specifies the~nonpolar! direction of ordering. The order pa
rameterQab is a symmetric and traceless tensor, and Eq.~1!
is valid only for the three dimensions, nematic phase as
3D Trdab53. In the 2D nematic phase, the tensor ord
parameter is proportional tona nb2 1

2 dab because Trdab
52.

In Eq. ~1!, the scalar order parameterS is defined as the
following ensemble average:

S3D5^P2~cosQ!&, ~2!

whereP2(x) is the second Legendre polynomial and cosQ
5(a•n) where the unit vectora is in the direction of the
primary molecular axis. In the 2D nematic phase, the defi
tion of S is different because instead of Legendre polynom
als one uses the ordinary Fourier expansion. As a result

S2D5^cos 2Q&. ~3!

Finally, the tensor order parameterQab can be written as the
following average:

Qab5 K aaab2
1

D
dabL , ~4!

whereD53 for the 3D nematic phase andD52 for the 2D
one.

One notes that the orientation of a nonpolar rodlike m
ecule can be specified by the second-rank tensoraaab which
determines the form of the tensor order parameters~1! and
~4!. The orientation of a symmetric tripod molecule can
characterized by a symmetric third-rank tensor which
pends on the unit vectorsa1 , a2 anda3 in the direction of the
first, second, and third molecular ‘‘legs,’’ respectively~see
Fig. 2!. This tensor can be written as
06170
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tabg5a1aa2ba3g, ~5!

a,b,g5x,y and the bar denote the normalized sum over
possible permutations of the indices 1,2,3 because the
tors a1 , a2, and a3 are equivalent. One notes also that t
unit vectorsa1 , a2, anda3 are related to each other becau
the molecule is assumed to be rigid. Then the tensortabg can
be expressed in terms of a single unit vectora taken arbi-
trarily from the set (a1 ,a2 ,a3). It can be shown after som
algebra that the tensortabg can be expressed as

tabg5aaabag2 1
4 ~aadbg1abdag1agdab!, ~6!

where the unit vectora is in the direction of a side chain o
the symmetric tripod molecule.

The tensortabg , which characterizes the orientation of
tripod molecule, is analogous to the tensoraaab2 1

2 dab for a
rodlike molecule. Thus, using this analogy, we can define
macroscopic tensor order parameter of the tripod phase

Tabg5^aaabag2 1
4 ~aadbg1abdag1agdab!&. ~7!

The averaging in Eq.~7! can be performed explicitly us
ing the symmetry of the anisotropic tripod phase and with
employing any particular microscopic model. Indeed, Eq.~7!
can be rewritten as

Tabg5E tabg f 1~c!dc, ~8!

where f 1(c) is the orientational distribution function of th
tripod phase and the anglec specifies the orientation of th
tripod molecule. As mentioned above, the anisotropic
phase composed of tripod molecules possesses a thre
symmetry axis. Therefore, the orientational distribution fun
tion of such phase should depend on cos 3c, wherec is the
angle between the unit vectora and a macroscopic directorl
@chosen from the set of three equivalent directors (l1l2l3)
which make an angle of 2p/3 between each other#.

The tensortabg in Eq. ~8! depends on the componentsaa
@see Eq.~6!# which can be expressed as

aa5na cosc1ma sinc, ~9!

where the unit vectorm'n. Substituting Eq.~9! into Eq.~6!
and then into Eq.~8!, one obtains

Tabg5nanbng^cos3c&1~nambmg1nbmamg1ngmamb!

3^cosc sin2c&, ~10!

where we have taken into account that the average of
odd function ofc vanishes, because the distribution functi
f 1(cos 3c) is even inc.

In Eq. ~10!, the components of the unit vectorm can be
directly expressed in terms ofn taking into account the fol-
lowing relation which is valid in the 2D geometry for an
two orthogonal unit vectorsn andm,

nanb1mamb5dab . ~11!
7-3
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M. A. OSIPOV AND J. STELZER PHYSICAL REVIEW E67, 061707 ~2003!
Substitutingmamb5dab2nanb into Eq. ~10! one obtains,
after some straightforward algebra, the following express
for the tensor order parameter of the tripod phase:

Tabg5^cos 3c&Fnanbng2
1

4
~nadbg1nbdag1ngdab!G .

~12!

Here the scalar order parameterS5^cos 3c&. This formula
can be compared with the corresponding expression for
order parameter of the 2D nematic phaseS5^cos 2c&. The
orientational part of the tensor order parameter has exa
the same mathematical form as the molecular alignment
sor tabg @see Eq.~6!# because both tensors represent
same symmetry group. One notes that the order param
~12! is relatively cumbersome. However, the coupling b
tweenTabg and the molecular alignment tensor can be
pressed in a very simple form,

Tabgtabg5^cos 3c&cos 3c. ~13!

This means that the orientational distribution function, wh
may only depend on the coupling between a molecular
entation and the tensor order parameter, is indeed a func
of Scos 3c.

The tensor order parameter~12! can be used to show tha
the transition from the isotropic to the tripod phase can be
second order. Indeed, one can readily see that it is impos
to compose a cubic invariant in the Landau expansion of
free energy using a symmetric third-rank tensor.

Finally, one notes that so far we have considered only
order parameter of the homogeneously ordered tripod ph
The more complex phases, presented in Figs. 1~b! and 1~c!
are composed of three different superlattices and a trans
from the orientationally disordered phase involves both o
entational and translational symmetry breaking. In this ca
the order parameter of an ordered superlattice can be
pressed as a set of three density waves,

rabg
( j ) 5r0eik j •rTabg , ~14!

where the tensorTabg is given by Eq.~12! and the wave
vectorsk j ( j 51,2,3) are shown in Fig. 2. The angle betwe
any two vectorsk j is equal to 2p/3 and the lengthuk j u
52pA3/a, wherea is the period of the underlying hexago
nal lattice.

III. MOLECULAR MODEL AND MONTE CARLO
SIMULATIONS

A. Intermolecular model interaction potential

Let us consider the intermolecular pair potential ene
between two tripod molecules depicted in Fig. 2. As d
cussed in Sec. II, the orientation of a tripod moleculei can be
specified by the two-dimensional unit vectorâi which is in
the direction of a molecular leg~see Fig. 2!. In this paper, we
consider flat tripod molecules which possess a three
symmetry axis. In this case, all three legs of a given m
ecule are equivalent and the unit vectorâi can be in the
06170
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direction of any one of them. In the laboratory frame, t
orientation of such a molecule can also be specified by
anglec i between the vectorâi and some macroscopic axisx̂.
In general, the interaction potential between two tripod m
eculesi and j depends both on their unit orientation vecto
âi and âj and on the intermolecular separation vectorr i j .
Thus the pair potentialU( i , j ) is U(âi ,âj ,r i j ). In a mono-
layer, all three vectorsâi , âj , andr i j are parallel to the same
plane, and in this case the relative orientation of the t
molecules can be specified by two anglesf i andf j ~see Fig.
2!, which determine the orientation of the axesâi andâj with
respect to the intermolecular separation vectorr i j . Then the
interaction potential is a function of the anglesf i andf j and
of the intermolecular distance r i j , i.e., U( i , j )
5U(f i ,f j ,r i j ). Heref i5c i2c i j andf j5c j2c i j , where
the anglesc i , c j , and c i j denote the orientation of the
vectorsâi , âj , andr i j , respectively, in the laboratory frame
For further considerations, it is more convenient to use
equivalent variablesf i2f j5c i2c j and f i1f j5c i1c j
22c i j . Here the anglef i2f j specifies the relative orienta
tion of the two flat molecules, which does not depend on
direction of the intermolecular separation vector~see Fig. 2!.

The interaction potential should be a periodic function
the anglesf i2f j and f i1f j and, therefore, it can be ex
panded in a double Fourier series. One notes that a flat m
ecule ofC3 symmetry coincides with itself after a rotation b
an angle of62p/3 about the symmetry axis. The interactio
potential between such molecules should be invariant un
such rotations. Thus it follows from symmetry that the inte
action potential must be invariant under the transformati
f i85f i12pm/3 and f j85f j12pn/3, where m and n
are integers. The corresponding transformation propertie
the potential U(f i2f j ,f i1f j ,r i j ) can be expressed
as U(f i2f212pm/3,f i1f j12pn/3,r i j )5U(f i2f j ,f i
1f j ,r i j ) for any m and n. One concludes that the Fourie
expansion of the potentialU(f i2f j ,f i1f j ,r i j ) contains
only the functions cos@3m(fi2fj)# and cos@3n(fi1fj)#. The
functions sin@3m(fi2fj)# and sin@3n(fi1fj)# are not in-
cluded because for nonchiral molecules the 2D interac
potential should be invariant under a simultaneous sign
version of the anglesf i and f j . Thus any interaction be
tween two tripod molecules can be expanded as

U~f i2f j ,f i1f j ,r i j !

5 (
m,n50

`

Umn~r i j !cos@3m~f i2f j !#cos@3n~f i1f j !#.

~15!

Taking into consideration only the first terms of this expa
sion, one obtains the following simple model interaction p
tential:

U~ i , j !5U0~r i j !1U2~r i j !cos@3~f i2f j !#

1U1~r i j !cos@3~f i1f j !#. ~16!
7-4
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In this and in the following section, we show that the mod
potential~16! can be used both in computer simulations a
in a mean-field theory to obtain the structures presente
Fig. 1.

Let us first consider the 2D phase with homogeneous
entational order~structureA in Fig. 1!. In this phase all mol-
ecules, on an average, are parallel to each other, and a si
interaction potential that stabilizes this structure is provid
by the second term in Eq.~16!, with a negative coupling
constant (U2,0). Thus the model potential for structureA
can be written as

UA~ i , j !5U0~r i j !2UA~r i j !cos@3~f i2f j !#. ~17!

For UA.0, the potential takes its minimum forf i5f j , i.e.,
for parallel molecules. We note that in this potential t
threefold molecular symmetry is reflected in the functi
cos@3(fi2fj)#, which has the periodicity of 2p/3. The
analogous potential for a 2D system of rodlike molecu
~which possess aC2 symmetry axis! would be of the form
U( i , j )5U0(r i j )2J cos@2(fi2fj)#. This potential is charac
terized by the periodp and is a 2D analog of the so-calle
Maier-Saupe interaction potential for rodlike molecule
known in the theory of liquid crystals@1#.

The physical meaning of the potential~17! is that all three
legs of two neighboring tripod molecules want to be para
to each other, independent of their orientation with respec
the intermolecular separation vector, e.g., due to a long-ra
anisotropic attractive interaction. This can be reasonabl
the legs are sufficiently short and, as a result, any two nea
neighbors on the hexagonal lattice~see Fig. 1! can rotate
freely with respect to each other. For longer legs, there ex
a strong repulsion between neighbor tripod molecules, wh
corresponds to interpenetration of the two legs. This rep
sion takes place at some particular relative orientation of
two molecules with respect to the intermolecular separa
vector, and it can be accounted for by the third term in E
~16!.

Let us consider in more detail the interaction between t
molecules depicted in Fig. 2, assuming that the legs are
ficiently long to overlap at some particular orientations. O
one hand, the neighboring tails with long axesa1i and a2 j
~see Fig. 2! want to be parallel due to the anisotropic attra
tive dispersion interaction. Thus the interaction potentia
expected to take its minimum forf i2f j5p/6, i.e., for an-
tiparallel orientation of the vectorsa1i anda2 j in Fig. 2. This
can be achieved if the coupling constantU2 is positive.

On the other hand, there should be a strong repuls
between the two molecules if the two neighboring tails ov
lap, i.e., if botha1i anda2 j in Fig. 2 are in the direction of the
intermolecular separation vectorr i j . In this configuration,
f i50 andf j5p. The repulsion between two tripod mo
ecules due to an overlap of the neighboring tails is descri
by the third term in Eq.~16!. For f i50 and f j5p, one
obtainsU1 cos@3(fi1fj)#52U1 and therefore the coupling
constantU1 should be negative.

One concludes that in the first approximation, the inter
tion between two tripod molecules can qualitatively be d
scribed by the simple model potential~16!. The ratio and the
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signs of the coupling constantsU2 andU1 are expected to
depend on the length of the molecular side chain. For su
ciently long chains, which may overlap at some particu
relative orientations of the two molecules, the consta
U2.0 andU1,0. It is shown in Sec. III B below that the
experimentally observed structureB presented in Fig. 1 can
be obtained in computer simulations using the model pot
tial ~16!. A simple mean-field theory of such an anisotrop
2D phase, based on the same pair potential~16!, is presented
in Sec. IV.

We note that the properties of an anisotropic tw
dimensional phase, composed of tripod molecules with s
ficiently long tails, are determined by frustration. In fact, it
generally impossible to find a homogeneous orientation of
molecules which corresponds to a minimum of the inter
tion potential for all pairs of nearest neighbors. The inter
tion energy between two parallel tripod molecules stron
depends on the orientation of the molecular axes with res
to the intermolecular vector as can be seen from the struc
of potential~16!. For example, forf i5f j50 the interaction
energyU( i , j )5U01U21U1 , while for f i5f j5p/2 one
obtainsU( i , j )5U01U22U1 . Thus, even if the interac
tion energy is negative for a given pair of nearest neighbo
it may be positive for some other pair due to a repulsion
interfering tails. For instance, we observe the honeycomb
structureC in Fig. 1 in computer simulations, when assum
ing bothU1 andU2 to be positive.

As a further simplification, we consider only interaction
between nearest neighbors and assume that the mole
centers are located on the sites of a hexagonal lattice as i
been observed in experiment@11#. The hexagonal lattice ap
parently results from an interaction between flat molecu
and a graphite substrate, and there is no experimental i
cation of the existence of a fluid phase. Thus we consi
only two-dimensional plastic crystal phases in which the
isotropic molecules possess one orientational degree of f
dom.

B. Monte Carlo simulations

In order to examine the stability of the structures in Fig
we performed 2D Monte Carlo computer simulations for
model system consisting of 1200 tripod molecules. The m
lecular centers of mass were fixed on the sites of a hexag
lattice, whereas the tripods were allowed to rotate freely
plane about theirC3 symmetry axes. The system was plac
into a simulation box of the hexagonal shape~see Fig. 7!
which reflects the symmetry of the underlying lattice mod
Periodic boundary conditions in all three directions were e
ployed by surrounding the simulation box with a chain
outer molecules. These were periodic images of molecu
inside the box, shifted by one box period in the appropri
direction. The Monte Carlo simulations were performed
various temperatures between 0.1 and 3.0, with a temp
ture interval of 0.1. For each temperature, the simulation
consisted of 5000 equilibration cycles followed by anoth
5000 cycles to evaluate the average order parameters
overall orientations. For controlling thermodynamic equili
7-5
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rium, both the instantaneous energy and the order param
and overall orientation were monitored each tenth of
Monte Carlo cycle.

The tripod molecules were interacting via the pair pote
tial ~16! introduced in the preceding section. Only near
neighbor interactions were taken into account, i.e., the t
interaction of one molecule was the sum of six pair inter
tions. Due to periodic boundary conditions, the molecules
the boundary of the box interacted both with real and ima
molecules. As already discussed, we chose three distinc
rametrizations of the model potential~16! to investigate the
different phases of Fig. 1. Because the molecules are fixe
lattice sites and the nearest neighbor distance is a cons
there is no dependence of the potential parameters on
intermolecular scalar distancer i j . Therefore, the paramete
U0 merely denotes an arbitrary shift of the energy refere
point. We set it equal to zero. The choice of the parame
U2 andU1 , corresponding to the structuresA, B, andC of
Fig. 1, is summarized in Table I.

For a detailed investigation, we calculated the tempera
dependence of the scalar order parameterS5^cos 3xi& from
the simulation data. Herex i denotes the angle between th
â1i axis of an individual tripod molecule and the avera
preferred orientationn̂. Apparently,S cannot be evaluated
from its definition, because the director axisn̂ is not known
a priori. In the following, we derive a procedure of how
determine both the scalar order parameter and the dire
from simulations. As a starting point, we state that the ori
tations of the molecular axesâ1i are known in the laboratory
frame, wherec ix5c i and c iy5p/22c i are the angles be
tweenâ1i and thex and they axis, respectively. Due to trigo
nometric identities, we can evaluate the averages

^cos 3c ix&54^~ â1i• x̂!3&23^~ â1i• x̂!&, ~18!

^cos 3c iy&54^~ â1i• ŷ!3&23^~ â1i• ŷ!&. ~19!

Now we express the unit vectorsx̂ and ŷ of the laboratory
frame in the orthonormal frame (n̂,n̂') spanned by the di-
rector and the vectorn̂' perpendicular to the director,

x̂5n̂ cosCn1n̂'sinCn , ~20!

ŷ5n̂ sinCn2n̂'cosCn . ~21!

TABLE I. Dimensionless parametrizations of the model intera
tion potential between a pair of tripod molecules corresponding
the structures in Fig. 1.

Structure of Fig.1 ParameterU2 ParameterU1

A 21 0
B 1 21
C 1 1
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HereCn5x i2c i denotes the angle between the director a
thex axis. After inserting Eqs.~20!, ~21! into Eqs.~18!, ~19!
and some trigonometric algebra, we find

^cos 3c ix&5cos 3Cn^cos 3c i&5S cos 3Cn , ~22!

^cos 3c iy&5sin 3Cn^cos 3c i&5S sin 3Cn . ~23!

The equations above now enable us to determine the sc
order parameterS and the angleCn which describes the
director orientation, from averages calculated in the labo
tory system,

S5A^cos 3c ix&
21^cos 3c iy&2, ~24!

Cn5
1

3
arctan

^cos 3c iy&

^cos 3c ix&
5

1

3
arccot

^cos 3c ix&

^cos 3c iy&
. ~25!

We start the discussion of the simulation results with
parametrizationsU2521 andU150 which yield the ho-
mogeneous structureA ~see Fig. 1!. Here all molecular axes
are, on an average, parallel to each other. Figure 3 shows
temperature dependence of the scalar order parameter.

-
o

FIG. 3. Scalar order parameterSvs dimensionless temperatureT
for potential parametrizationsU2521 andU150 ~in dimension-
less units!, corresponding to structureA of Fig. 1.

FIG. 4. Instantaneous director angles during a Monte Carlo
at temperatureT50.1 for potential parametrizationU251 and
U1521 ~in dimensionless units!. Solid, dashed, and dotted line
correspond to the three superlattices in Fig. 3.
7-6
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ORIENTATIONAL ORDERING AND CHIRAL SYMMETRY . . . PHYSICAL REVIEW E67, 061707 ~2003!
close to 1 for very low temperatures and then decays w
increasing temperature. The transition to the isotropic ph
is at aboutTc51.9. This value is considerably smaller tha
the mean-field transition temperature ofTc53.0. We will
discuss this discrepancy further in the following Sectio
Due to limited system size the order parameter in the iso
pic phase retains small, but finite values.

StructuresB and C of Fig. 1 are more complicated. A
explained in the preceding section, they can be describe
a superposition of the three superlattices imposed on the
sic hexagonal lattice. The superlattices are distinguished
different average orientational order of the respective m
ecules. To investigate this behavior, we calculated the o
parameterS and the director angleCn from Eqs.~24! and
~25! separately on the three superlattices. A very interes
feature of the system is revealed from Figs. 4 and 5 wh
plot the average director angles and the scalar order pa
eters for the three superlattices during the Monte Carlo
~parametrizationsU251, U1521, temperatureT50.1).
Obviously, there are two superlattices with clearly defin
director angles of630°, while the average orientation on th
third superlattice is strongly fluctuating~Fig. 4!. However,
the superlattices themselves are not permanent. Instead,
are interchanging their roˆles. E.g., the superlattice whose o

FIG. 5. Instantaneous order parameters during a Monte C
run at temperatureT50.1 for potential parametrizationsU251 and
U1521 ~in dimensionless units!. Solid, dashed, and dotted line
correspond to the three superlattices of Fig. 3.

FIG. 6. Scalar order parametersS vs dimensionless temperatur
T for potential parametrizationsU251 andU1521 ~in dimen-
sionless units!, corresponding to structureB of Fig. 1. Rhombs,3
symbols and squares correspond to three different sublattices.
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entation fluctuates around230° at the beginning of the
simulation run assumes a stable orientation of130° by a
jump after 1500 cycles. To analyze the orientational order
the superlattices, we thus decided to sort the order par
eters in Fig. 5 according to their magnitude for each Mo
Carlo cycle. The averages over the run were then calcula
from the sorted order parameters. In this way, we obtaine
maximum, medium, and minimum order parameter.

In Fig. 6, the temperature dependence of the three o
parameters introduced above is plotted for potential par
etersU251, U1521. In the low temperature regime, th
plot clearly reveals that the maximum and medium ord
parameters are quite high compared to the minimum o
The latter corresponds to the disordered superlattice, i.e.
strong fluctuations of the director angle in Fig. 4. On t

lo

FIG. 7. Molecular configuration from a Monte Carlo run at tem
peratureT50.1 for potential parametrizationsU251 and U15
21, corresponding to structureB in Fig. 1. The hexagonal simula
tion box contains 1200 tripod molecules. A chain of periodic ima
molecules outside the box is also shown.

FIG. 8. Scalar order parametersS vs dimensionless temperatur
T for potential parametrizationsU251 andU151, corresponding
to structureC of Fig. 1. Rhombs,3 symbols and squares corre
spond to three different sublattices.
7-7
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M. A. OSIPOV AND J. STELZER PHYSICAL REVIEW E67, 061707 ~2003!
other hand, the molecules on the remaining two superlatt
are well aligned at director angles of630°, respectively.
They cause the maximum and medium order parameter
assume high values which are close to each other~Fig. 6!.
All together, this exactly corresponds to the structure
served by Charra and Cousty in the 2D system of disc
molecules@11#. This structure is presented in Fig. 1~struc-
ture B). Thus our model potential is sufficient to stabiliz
this unusual partly disordered structure in Monte Carlo sim
lations. With increasing temperature the order is again
creasing, similar to the homogeneous structureA ~Fig. 3!.
The phase transition now occurs at a lower temperat
AboveTc51.5, the order in all superlattices is mainly lost.
snapshot of the molecular configuration for the system
temperatureT50.1 is presented in Fig. 7.

Finally, we consider the potential parametrizationU2

5U151. The simulation results are analyzed in the sa
way as in the previous case, namely, by sorting the or
parameters on the three superlattices according to their m
nitude. The temperature dependence of these sorted o
parameters is fairly similar to the one corresponding to str
ture B ~Fig. 8!. Again, in the low temperature regime the
are two superlattices with high order parameters while
order in the third one is low. The director angles in the
dered superlattices now are660°, which means that thes
molecules are aligned according to the crystallographic a
of the hexagonal lattice. As a result, the phase appears t
nonchiral. The disordered superlattice corresponds to a f
tration effect: the molecules in the centers of the hexag
which are formed by the remaining two superlattices are
entationally disordered because this is the only way to red
the total free energy of the whole system~structureC in Fig.
1!. Again, a snapshot of the configuration at temperaturT
50.1 is shown in Fig. 9. The frustration of the molecules

FIG. 9. Molecular configuration from a Monte Carlo run at tem
peratureT50.1 for potential parametrisationU251 andU151,
corresponding to structureC of Fig. 1. The hexagonal simulatio
box contains 1200 tripod molecules. A chain of periodic ima
molecules outside the box is also shown.
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the disordered superlattice is clearly recognizable. We no
that even at low temperatures the structure is not perf
instead, some defects are forming.

IV. MOLECULAR-STATISTICAL THEORY

Let us first consider the simple structureA presented in
Fig. 1. This structure corresponds to the anisotropic
phase in which all lattice sites are statistically equivale
From the molecular-statistical point of view, the phaseA is
characterized by the one-particle distribution functi
f 1(c j ), where the anglec j specifies the orientation of th
tripod moleculei in the laboratory frame. By contrast, th
phaseB in Fig. 1 is composed of three inequivalent superl
tices which are characterized by different average orien
tions of the tripod molecules. Such a phase is described
three different orientational distribution functionsf 1

(s)(c j )
(s51,2,3), which correspond to the three inequivalent
perlattices. It should be noted that all sites in all three sup
lattices in the phaseB are still occupied by equivalent mol
ecules and thus the pair interaction potentialU( i , j ) remains
the same for all pairs of nearest neighbors. The general f
of this potential is given by Eq.~15!. In this section, we will
use the simple model potential~16! which is obtained by
taking into account the first terms in expansion~15!. The
same model potential has been used in the simulations~see
Sec. III!.

Taking into account only interactions between near
neighbors, the internal energyU per molecule can be ex
pressed as a sum of averaged interaction energies betwe
pairs of neighboring molecules. One notes that in the phasB
any two nearest neighbors belong to different superlattic
Thus there exist only three inequivalent pairs of near
neighbors which we denote as~1,2!, ~2,3!, and~1,3!, where
the indicesi andj ( i , j 51,2,3) correspond to different supe
lattices. Each molecule which belongs to an arbitrary sup
lattice i is interacting with three nearest neighbors belong
to the superlatticej Þ i , and with three nearest neighbo
belonging to the superlatticekÞ j Þ i . Now the internal en-
ergy U of the phaseB in the mean-field approximation ca
be written as

U/N53E f 1
(1)~c1!U~c12c2 ,c11c222c12!

3 f 1
(2)~c2!dc1dc2

13E f 1
(1)~c1!U~c12c3 ,c11c322c13!

3 f 1
(3)~c3!dc1dc3

13E f 1
(2)~c2!U~c22c3 ,c21c322c23!

3 f 1
(3)~c3!dc2dc3 , ~26!

where the anglec i specifies the orientation of moleculei and
the anglec i j specifies the orientation of the intermolecul
vector between the neighboring moleculesi and j. Here
7-8
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ORIENTATIONAL ORDERING AND CHIRAL SYMMETRY . . . PHYSICAL REVIEW E67, 061707 ~2003!
f 1
( i )(c i) is the orientational distribution function of the supe

lattice i, and the pair interaction potentialU( i , j )5U(c i
2c j ,c i1c j22c i j ) is given by Eq.~16!.

Now the free energyF can be determined using the ge
eral thermodynamic expression

U5
]~bF !

]b
, ~27!

whereb51/(kBT) and where the internal energyU is given
by Eq. ~26!. The solution of Eq.~27! can be expressed as

F/N5kBTE f 1
(1)~c1!ln f 1

(1)~c1!dc1

1kBTE f 1
(2)~c2!ln f 1

(2)~c2!dc2

1kBTE f 1
(3)~c3!ln f 1

(3)~c3!dc213U1213U13

13U23, ~28!

where

Ui j 5E f 1
( i )~c i !U~c i2c j ,c i1c j22c i j ! f 1

( j )~c j !dc idc j ,

~29!

and whereiÞ j ( i , j 51,2,3). One notes that Eq.~26! for the
internal energyU can now be derived back from Eqs.~27!–
~29!, taking into account that the distribution function
f 1

( i )(c i) should correspond to the minimum of the free e
ergy functional~28!. Minimization of the free energy yields
the following equations for the orientational distributio
functions:

f 1
( i )~c i !5

1

Zi
exp$2bUMF

( i ) ~c i !%, ~30!

where the mean-field potentialsUMF
( i ) (c i) are given by

UMF
(1) ~c1!53E U~c12c2 ,c11c222c12! f 1

(2)~c2!dc2

13E U~c12c3 ,c11c322c13! f 1
(3)~c3!dc3 ,

~31!

UMF
(2) ~c2!53E U~c22c1 ,c21c122c12! f 1

(1)~c1!dc1

13E U~c22c3 ,c21c322c23! f 1
(3)~c3!dc3 ,

~32!
06170
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UMF
(3) ~c3!53E U~c32c1 ,c31c122c13! f 1

(1)~c1!dc1

13E U~c32c2 ,c31c222c23! f 1
(2)~c2!dc2 ,

~33!

with the pair interaction potential

U~ i , j !5U0~r i j !1U2~r i j !cos@3~c i2c j !#

1U1~r i j !cos@3~c i1c j22c i j !#. ~34!

As discussed in Sec. II, the orientational distribution fun
tions f 1

( i )5 f 1
( i )(cos 3ci) because they should depend only

the coupling between the molecular axesa1 ,a2 ,a3 and the
third-rank tensor order parameterTabg @see Eq.~13!# of the
phaseB. Here c i is the angle between a molecular axisai
and a macroscopic directorl i . It is important to note that,
due to the symmetry of the phase, one may use any dire
from the set (l1 , l2 , l3) without changing the mathematica
form of the free energy functional~28!.

The expression for the pair interaction potential~34!
U(c i2c j ,c i1c j22c i j ) can be simplified if one consider
only the interactions between the nearest neighbors on
hexagonal lattice. In this case, 6c i j 52pn for all pairs of
nearest neighbors (i , j ), wheren is an integer. As a result, th
second term in Eq.~34! can be rewritten asU1cos@3(ci1cj
22cij)#5U1cos(3ci13cj12pn)5U1cos@3(ci1cj)#, i.e., the
pair potential does not depend on the ‘‘bond’’ anglec i j in
this case and can finally be expressed as

U~ i , j !5U0~r i j !1U1cos@3~c i1c j !#

1U2cos@3~c i2c j !#. ~35!

Now one should take into account that different super
tices may be characterized by different average orientat
of the tripod molecules. In other words, different superl
tices may correspond to distinct directors. In this case,
orientational distribution functionsf 1

( i )(c) actually depend
on the differencec2c i0, where the anglec i0 specifies the
orientation of the director of the superlatticei in the labora-
tory frame. Thusf 1

( i )(c)5 f 1
( i )(c2c i0)5 f 1

( i )
„cos 3(c2ci0)….

Substituting this expression together with Eq.~35! into Eq.
~31!, one obtains

UMF
( i ) ~c i !53U1cos@3~c i1c j 0!#Sj13U2

3cos@3~c i2c j 0!#Sj13U1

3cos@3~c i1ck0!#Sk13U2

3cos@3~c i2ck0!#Sk , ~36!

where iÞ j Þk ( i , j ,k51,2,3) andSi are the corresponding
orientational order parameters given by the following eq
tion:

Si5E cos 3@~c2c i0!# f 1
( i )~c2c i0!dc i0 . ~37!
7-9
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In the derivation of Eqs.~36! and~37!, we have taken into
consideration that the identity

E cos 3~c i6c j ! f 1~c j2c j 0!dc j

5cos@3~c i7c j 0!#E cos@3~c j2c j 0!# f 1~c j2c j 0!dc j

~38!

is valid for any functionf which is even inc j2c j 0.
One notes that the anglesc j 0 in Eq. ~36! are not arbitrary.

It is possible to obtain equations for the angles from
general equations~30! and~36!. Indeed, let us substitute th
mean-field potentials~36! into Eq. ~30!. It follows that the
orientational distribution functionf 1

( i ) on the left-hand side o
Eq. ~30! depends onc i2c i0 ( i 51,2,3) or, more exactly, on
cos@3(ci2ci0)#, as discussed before. At the same time,
corresponding mean-field potential on the right-hand side
Eq. ~30! depends on cos@3(ci6cj0)#, where j Þ i . However,
the dependence should be the same on both sides of Eq.~30!,
and this imposes some restrictions on the values of
anglesc0i ( i 51,2,3). As a result, one obtains the followin
equations forc0i ,

sin@3~c i01c j 0!#50, ~39!

sin@3~c i02c j 0!#50. ~40!

Now Eq. ~36! can be rewritten in the form

UMF
( i ) ~c!5~Ui j Sj1UikSk!cos@3~c2c i0!#, ~41!

where

Ui j 53U1cos@3~c i01c j 0!#13U2cos@3~c i02c j 0!#,
~42!

Uik53U1cos@3~c i01ck0!#13U2cos@3~c i02ck0!#.
~43!

One notes that Eq.~39! should be valid for alliÞ j ( i , j
51,2,3). It can be shown that there exist three different
lutions of Eq.~39! which correspond to different phases.

~1! c015c025c035p/21(2p/3)n. All three sublattices
are ordered in the same direction. Substituting this solu
into Eqs.~41!–~43!, one obtains the following expression fo
the mean-field potentials:

UMF
( i ) ~c i !53~U22U1!cos@3~c i2p/2!#~Sj1Sk!,

~44!

where iÞ j Þk. Here the orientational order parametersSi
can be determined self-consistently after substitution of E
~42! and ~43! into Eq. ~37!. One notes that in this case, a
three superlattices are equivalent and thus the only solu
is S15S25S35S, where

S5
1

Z0
E cos 3c exp$26b~U22U1!cos 3c%dc ~45!
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Z05E exp$26b~U22U1!cos 3c%dc. ~46!

Equations~42! and ~43! describe a second-order orient
tional phase transition and their numerical solution is p
sented in Fig. 1. Thus in this case, the system undergo
phase transition into the homogeneously orientationally
dered phase which does not split into sublattices. This ph
corresponds to structureA in Fig. 2. One notes that the ho
mogeneously ordered phase may be stable only ifU22U1

,0, i.e., if the anisotropic attraction~characterized by the
coupling constantU2) is stronger than the anisotropic repu
sion between the tripod molecules. The second-order ph
transition from the 2D isotropic to the homogeneously
dered phase occurs atkBTC53(U12U2).

~2! c i05p/612pn/3, c j 052p/612pk/3 (iÞ j ),
wheren and k are integers. In this case, the superlatticei
andj are ordered in opposite directions. One notes that th
possible because the orientational order parameter of the
pod molecules is polar, as discussed in Sec. II. It should
noted that at this stage, the orientation of the principal a
of the third superlatticekÞ j Þ i remains undetermined. It is
shown below that the third superlattice is disordered.

Now let us substitutec i05p/612pn/3 andc j 052p/6
12pk/3 into the expression for the mean-field potent
UMF

(k) of the superlatticek. One obtains

UMF
(k) ~c!53~U12U2!~Sj2Si !sin@3~c2ck0!#. ~47!

The order parameterSk of the superlatticek is given by

Sk5
1

Zk
E cos@3~c2ck0!#exp$2bUMF

(k) ~c!%dc. ~48!

Now one can readily see that the mean-field poten
UMF

(k) (c) vanishes ifSi5Sj ( iÞ j Þk), i.e., if the two other
superlattices are characterized by the same scalar orde
rameter. In this case, the orientational distribution funct
f 1

(k)(c) is isotropic and the corresponding order parame
Sk50. The solutionsSi5Sj5S andSk50 can be tested for
self-consistency by using the equations forSi andSj ,

Si5
1

Zi
E cos@3~c2c i0!#exp$2bUMF

( i ) ~c!%dc, ~49!

Sj5
1

Zj
E cos@3~c2c j 0!#exp$2bUMF

( j ) ~c!%dc, ~50!

where the mean-field potentialsUMF
( i ) andUMF

( j ) are given by
Eq. ~41!. Substitutingc0i5p/6, c0 j52p/6, andSk50 into
Eqs.~42! and ~43!, one obtains

Si5
1

Zi
E cos 3c exp$2b~U12U2!Sjcos 3c%dc,

~51!
7-10



th

o-

e

d

od

.
tw
r

e.
d

er

a
a

sit
b
r

f t
e
it
ll

-
thus
eral
ble

ally

on
re.
the

cture
the
an
e
ral

nts

ter
rre-

D
ex
the
an
e-

es
n

ral
ym-

nt
ne-

ons
pro-
,
a-

ORIENTATIONAL ORDERING AND CHIRAL SYMMETRY . . . PHYSICAL REVIEW E67, 061707 ~2003!
Sj5
1

Zj
E cos 3c exp$2b~U12U2!Sicos 3c%dc.

~52!

It is interesting to note that Eqs.~51! and ~52! are com-
pletely equivalent, i.e., they are transformed into each o
under an exchange of the indicesi and j. Thus Si5Sj5S,
Sk50 is indeed a self-consistent solution of Eqs.~48!–~50!,
where the order parameterS is given by the single equation

S5
1

ZE cos 3c exp$2b~U12U2!Scos 3c%dc ~53!

and where

Z5E exp$2b~U12U2!Scos 3c%dc. ~54!

According to Eq.~53!, the phase transition into the anis
tropic tripod phase with three superlattices occurs atT5T0
52(U22U1)/kB. The transition is of second order. Th
phase is stable ifkBT,2(U22U1), i.e., the coupling con-
stantU2 should be larger than the constantU1 . One notes
that the homogeneously ordered phaseA, described above, is
stable ifkBT,2(U22U1) and therefore the phasesA andB
are complementary. For any fixed values ofU1 and U2 ,
these phases cannot occur simultaneously on the phase
gram.

~3! This solution corresponds to the phaseC in Fig. 1
which has a ‘‘honeycomb’’ structure. In this case, the trip
molecules on the superlatticesi and j are aligned in opposite
directions, similar to the 2D chiral phaseB discussed above
However, in the honeycomb phase, the directors of the
ordered superlattices are parallel to the axes of the unde
ing hexagonal lattice, while in the 2D chiral phaseB they
form an angle ofp/6 with respect to the axes of the lattic
Now, using the same mathematical argument as in the
scription of the previous solution, it can be shown thatc i0
5p12pk/3, c j 052pk/3 into Eqs. ~36!, ~37!, and ~30!
yields the following solutions for the scalar order paramet
of the three superlattices:Si5Sj5S andSk50, where

S5
1

ZE cos 3c exp$2b~U11U2!Scos 3c%dc ~55!

and

Z5E exp$2b~U11U2!Scos 3c%dc. ~56!

Thus in the honeycomb phase, the third superlattice also
pears to be disordered while the other two superlattices
characterized by the same scalar order parameterS. The di-
rectors of the two ordered superlattices point into oppo
directions, similar to the phaseB. In general, the honeycom
phaseC is very similar to the phaseB, but possesses a highe
symmetry because all directors are parallel to the axes o
hexagonal lattice. As a result, the honeycomb phase app
to be nonchiral because it is invariant under a reflection w
respect to any line which contains a lattice site and is para
to one of the axes of the lattice.
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One notes that Eq.~55! for the order parameterS has
exactly the same mathematical form as Eqs.~53! and~45! for
the phasesB andA, respectively. The effective coupling con
stants, however, are different for all those phases, and
these phases may be stable in different regions of the gen
T2U12U2 phase diagram. The honeycomb phase is sta
for kBT,(U12U2).

V. CHIRAL ORDER PARAMETER OF THE
INHOMOGENEOUS ANISOTROPIC PHASE

As discussed above, the inhomogeneous orientation
ordered phaseB presented in Fig. 1~b! is two-dimensionally
chiral. This means that it is not invariant under a reflecti
with respect to a line parallel to the plane of the structu
One notes, however, that no 2D structure can be chiral in
common three-dimensional sense because any 2D stru
is invariant under a reflection with respect to the plane of
structure itself. In the 3D case, the chirality of a structure c
be characterized by the so-called ‘‘chirality index’’ or th
chiral order parameter which can be written in the gene
mathematical form@22,23#

D3D5ea,b,gAa,b,g , ~57!

where the nonsymmetric tensorAa,b,g characterizes the 3D
structure andea,b,g is the Levi-Cività tensor which is anti-
symmetric with respect to any two indices. The compone
of this tensor do not vanish if and only ifaÞbÞg.

In the two-dimensional case, the chirality order parame
can generally be written as a coupling between the co
sponding second-rank tensors:

D2D5ea,b,Aa,b , ~58!

whereea,b is the 2D unit antisymmetric tensor:

ea,b52eb,a , exy51, ~59!

wherea,b5x,y. One notes that the 2D tensorea,b is related
to the Levi-Cività tensor: ea,b5ea,b,geg , where the unit
vector e is normal to the plane. Thus the sign of the 2
antisymmetric tensor and the sign of the 2D chiral ind
depend on the choice of the direction of the normal to
plane. However, if the 2D chiral structure is located at
interface between two different media, the symmetry b
tween1e and2e is broken and the whole system becom
3D chiral. More information about 2D chirality indices ca
be found in Ref.@12#.

Anisotropic organic monolayers composed of nonchi
molecules may become 2D chiral after a corresponding s
metry breaking phase transition@13–18#. The macroscopic
chirality of such systems is usually determined by differe
orientations of several ordering tensors or by the sponta
ous chiral orientational deformations. Recently, expressi
for chiral order parameters for such systems have been
posed by Selingeret al. @24,25#. Using a similar approach
we propose the following expression for the chiral order p
rameter of the phaseB:
7-11
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DB5
1

l 3N0
K (

i , j
eabRadg

( i . j )~ tbdg
( i ) 2tbdg

( j ) !L , ~60!

where the bracketŝ•••& denote the ensemble average ov
the whole system,l is the length of the elementary bond o
the hexagonal lattice, andN0 is the total number of pairs o
molecules in the system. Here the tensorstbdg

( i ) and tbdg
( j ) ,

which are given by Eq.~6!, specify the orientation of the
tripod moleculesi and j, respectively. The tensorRadg

( i . j ) is
composed of the components of the intermolecular ve
r i j 5r i2r j and has the same mathematical structure given
Eq. ~6!. The chiral order parameterDB is a 2D pseudoscala
which changes sign under a reflection with respect to a
in the plane of the structure. Equation~60! is also symmetric
with respect to an interchange of the indicesi and j because
the tensorRadg

( i . j ) is odd in r i j . One notes that in a homoge
neous system, the order parameter~60! vanishes identically.
However, in the phaseB the chiral order parameter is non
zero because the translational symmetry has been bro
and moleculesi and j may belong to different sublattice
with different tensor order parameters. In this paper, we c
sider a model in which the centers of tripod molecules
located on the sites on the hexagonal lattice. In this case
intermolecular vectorsr i j are fixed in space. Taking into con
sideration only elementary bonds, i.e., the intermolecu
vectors between the nearest neighbors, and using the pr
ties of tensors~6!, Eq. ~60! can be rewritten in the simple
scalar form@26#

DB5
1

N0
K 1

2 (
i . j

$sin@3~c i2c i j !#2sin@3~c j2c i j !#%L ,

~61!

where the anglesc i ,c j specify the orientation of the tripod
moleculesi and j, respectively, anglec i j specifies the orien-
tation of the bond~see Sec. III!. On the other hand, the
ensemble averaging in Eq.~61! can be performed directly in
the tensor form:

DB5 1
6 eabRadg

o ~^tbdg
I &2^tbdg

II &1^tbdg
III &!

5 1
6 eabRadg

o ~Tbdg
I 2Tbdg

II !, ~62!

whereTbdg
I andTbdg

II are the tensor order parameters of t
sublattices ‘‘1’’ and ‘‘2,’’ respectively, which are given by th
general equation~12! but may depend on different directo
nI andnII . The sublattice ‘‘3’’ is orientationally disordered i
the phaseB and thereforeTbdg

III 50. The tensorRadg
o has the

same mathematical form as in Eq.~6! but it depends on the
components of the unit vectork in the direction of a crystal-
lographic axis of the hexagonal lattice~see Fig. 10!:

Rabg
o 5kakbkg2 1

4 ~kadbg1kbdag1kgdab!. ~63!

Taking into account thatRadg
o Tadg5sin 3fkn, wherefkn is

the angle between the vectorsk and n, the chiral order pa-
rameter of the phase B can be written in the following sim
form:
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DB5 1
6 @sin~3c I0!SI2sin~3c0II!SII !], ~64!

whereSI andSII are the scalar orientational order paramet
of sublattices 1 and 2, respectively, andc I0 ,c II0 are the
angles between the axes of the corresponding tensor o
parameters and the axes of the hexagonal lattice. In
Monte Carlo simulations, the anglesc I0 and c II0 are tem-
perature independent, and therefore the temperature varia
of the chiral order parameter is determined by that of
orientational order parametersSI andSII which are presented
in Fig. 7. In the ideal infinite phaseB, c I052cII 05p/6.
SI5SII5S and the chiral order parameter is proportional
the unique orientational order parameterS,

DB~T!5 1
3 S~T!. ~65!

FIG. 10. Three superlattices characteristic for the structureB
and C in Fig. 1. The vectorsk i specify the crystallographic direc
tions of the basic hexagonal lattice. The superlattices are define
the vectorsl i .

FIG. 11. Temperature variation of the orientational order para
eterS of the phaseB obtained from Eqs.~53! and~54!. The transi-
tion temperaturekBTc52(U11U2)/2.
7-12
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For the mirror image of the phaseB, the sign in Eq.~65! is
reversed. In the framework of the mean-field theory, the
entational order parameterS(T) can be calculated numer
cally using Eqs.~53! and ~54!. The temperature variation o
S, which determined the variation ofDB , is presented in Fig
11. One notes that, in principle, the temperature variation
the order parameter can be determined experimentally
measuring the optical activity on reflection from the mon
layer located at the solid-liquid interface.

One can readily see that the chiral order parameter v
ishes for the nonchiral phaseC because in the phaseC, c I0
5p andc II050. Thus the transition into the phaseC corre-
sponds to anonchiral translational symmetry breaking. A
discussed in Sec. IV, in the phaseB three sublattices rapidly
interchange their roles during the course of simulation. Fo
given sublattice, the anglec0 jumps from 1p/6 to 2p/6
and back, and therefore the chiral order parameter altern
in sign. This means that the initial nonchiral symmetry
restored during the course of simulation.

VI. DISCUSSION

In this paper, we have developed a mean-field theory
the transition between the isotropic phase and the orie
tionally ordered phase composed of tripod molecules on
flat surface. Such molecules, which are typical building un
of thermotropic liquid crystals in the bulk, possess a thr
fold symmetry axis perpendicular to the flat core. The m
ecules are assumed to be located on the sites of the
dimensional hexagonal lattice which has been clea
observed experimentally in the self-assembled monola
formed by a series of discotic mesogenic molecules o
pyrolithic graphite surface@11#. A simple model potential of
interaction between rigid tripod molecules has been deri
using only the molecular symmetry and taking into cons
eration that in the general case, any pair interaction poten
for two rigid molecules on the flat surface depends only
two angles which specify the orientation of these molecu
with respect to the intermolecular vector. As shown in S
III, the simple analytical form of the model potential can
obtained by keeping the first two terms of the general exp
sion. A similar potential has been used also in the theory
3D columnar ordering in the system of discotic molecules
the same structure@26#.

The model potential~34! is a sum of two terms which
represent different kinds of intermolecular interactions. T
first term depends only on the angle between the side ch
of the two neighboring molecules. This part of the poten
is not sensitive to the orientation of the two molecules w
respect to the intermolecular vector, and, therefore, it has
same value for all pairs of nearest neighbors on the lat
provided the angle between the side chains of the molec
remains fixed. This term promotes parallel or antiparallel o
entation of neighboring tripod molecules depending on
sign of the coupling constantU2 . By contrast, the secon
term in Eq.~34! does depend on the relative orientation
the two molecules with respect to the intermolecular vec
and thus the corresponding interaction energy may be di
ent for different pairs of nearest neighbors on the lattice. T
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part of the potential is mainly determined by a short-ran
steric repulsion between long side chains of neighboring
pod molecules. Such chains may overlap for some partic
relative orientations of two neighboring molecules, and
corresponding interaction energy should be strongly posit
This determines the positive sign of the corresponding c
pling constantU1 .

In a 2D system of tripod molecules on the hexagonal
tice, the simplest orientational phase transition occurs if
first part of the interaction potential~34! is predominant. In
this case, the interaction potential is approximately the sa
for pairs of nearest neighbors and the system undergoes
second-order transition from the orientationally disorde
~‘‘isotropic’’ if the symmetry of the lattice is ignored! to the
orientationally ordered 2D tripod phase@see Fig. 1~a!#,
which is characterized by the threefold symmetry axis p
pendicular to the surface. One notes that this threefold s
metry is lower than the sixfold symmetry of the lattice. Th
orientational ordering of tripod molecules in such a phase
characterized by the scalar order parameterS5^cos 3c&
which is determined by the self-consistency equation~48!
which is similar to the corresponding equation found in t
2D Maier-Saupe theory@27# that describes the isotropic
nematic phase transition on the surface. At the same time
tensor order parameter of the tripod phase, discussed in d
in Sec. II, is very much different from the one for the 2
nematic phase. This difference is determined by a differe
in point symmetry groups of the two phases. In the 2D ne
atic phase, there exists only onenonpolardirection of order-
ing of long molecular axes, while in the 2D tripod phase o
finds three equivalentpolar directions specified by three
equivalent directorsl1 , l2 , and l3 ~see Fig. 2!.

The homogeneous tripod phase is expected to be st
when the side chains of the tripod molecules are sufficien
short~i.e., when they are significantly shorter than the latt
period!. However, the experimental situation seems to be
opposite@11# and therefore one cannot neglect the seco
part of the interaction potential, which is determined by
short-range repulsion between side chains.. As shown in
IV, the homogeneous tripod phase is unstable ifU1.U2 . In
the latter case, there is a frustration in the system becaus
one hand, all molecules have a tendency to be paralle
antiparallel ~depending on the sign ofU1). On the other
hand, there is no such homogeneous orientation of tri
molecules on the lattice which corresponds to a minimum
the total free energy because the side chains of some ne
neighbors will always overlap. The free energy of such s
tem may decrease if the system of tripod molecules on
hexagonal lattice splits into three sublattices which are ch
acterized by different values of the orientational order p
rameter and different orientations of the director. This me
that the system undergoes a phase transition with simu
neous orientational and translational symmetry breaking
different type of such transition has recently been conside
in Ref. @28#. One notes that in the present system, any t
nearest neighbors belong to different sublattices. This
ables the system to avoid frustration provided different s
lattices have different orientations of the director.
7-13
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As shown in Sec. IV, the actual values of the orientatio
order parameters for three different sublattices and the
responding angles which specify the orientations of the th
directors can be found by minimization of the total free e
ergy. This minimization procedure is different from the o
used in the conventional molecular theory of nematic liq
crystals where the free energy does not depend on the o
tation of the director which is assumed to be unifo
throughout the system~in the ideal system without bound
aries!. In such a case, the free energy is minimized only w
respect to the scalar nematic order parameter which sati
a self-consistency equation. By contrast, in the system
tripod molecules considered in this paper, the orientatio
order parameters of the three sublattices are determined
system of three equations which depend on the angles
tween directors in different sublattices. One notes that in
simple mean-field approximation, minimization of the to
free energy yields three solutions which correspond to
three phases presented in Fig. 1. The first solution co
sponds to the uniform orientationally ordered phase with
sublattices, while the second solution describes the ord
phase composed of three sublattices which exactly co
sponds to the 2D chiral structure of disklike mesogenic m
ecules on the graphite substrate, observed in the experim
@11#. In such a phase, one sublattice is orientationally dis
dered while the two other sublattices are characterized by
same degree of ordering~i.e., the scalar order parameters
the two sublattices are equal! and opposite directions of or
dering~i.e., the directors of the two sublattices are antipar
lel!. In addition, the angle between the directors and a c
tallographic axis of the underlying hexagonal lattice exac
corresponds to the experimental findings. This nonzero a
between the direction of ordering and axes of the hexago
lattice determines the 2D chirality of the tripod phase wh
does not have any symmetry line within the plane. In t
phase, the molecules which belong to the orientationally
ordered sublattice are surrounded by six ordered tripod m
ecules which split into three pairs with antiparallel avera
orientation. The existence of this phase is mainly determi
by short-range repulsion between long chains of neighbo
tripod molecules, and the mean-field theory indicates that
phase can be stable only ifU1.U2 . Comparing the stabil-
ity conditions for the 2D chiral phase and for the simp
uniform orientationally ordered phase, one concludes
these two phases cannot be stable simultaneously. This
explain why the homogeneously ordered phase has not
observed in the experiment. The 2D chirality of the phasB
can be described by the chiral order paramer which is c
sidered in Sec. V. The chiral order parameter possesses
posite signs for the two enantiomeric forms of the phaseB,
and it vanishes identically for the nonchiral phaseC which is
characterized by a nonchiral translational symmetry bre
ing. The temperature variation of the chiral order parame
is determined by that of the orientational order parameteS.

The results of the simple mean-field theory discus
above have been supported by Monte Carlo simulations
formed using the same model intermolecular interaction
tential. All three orientationally ordered 2D phases, presen
in Fig. 1, have been obtained for appropriate values of
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coupling constantsU1 and U2 , which have been taken
within the stability range for each phase specified by
theory. It is interesting to note that in the phases with
supramolecular structure, the three different sublattices in
change during the course of simulation. This is related to
fact that initially all lattice sites are equivalent and all near
neighbors interact via the same pair potential. The infinite
hexagonal lattice can be split into three equivalent sublatt
presented in Fig. 2 by three possible ways. The free ener
of these three configurations are the same and therefor
three states of the whole system should be reached duri
sufficiently long Monte Carlo run.

In conclusion, we note that it has been possible to der
a simple molecular model of the experimentally observed
chiral phase with rather untrivial supramolecular structu
The model is based on a mean-field theory and on a sim
interaction potential which has been derived using only
symmetry of a tripod disklike molecule. The same phase
also been obtained in Monte Carlo simulations using
same model interaction potential. This means that the
chiral tripod phase observed in Ref.@11# should be rather
common and may also be observed with other substan
and on other types of surfaces, provided the molecular s
metry remains the same. More experiments are neede
confirm this prediction.

It is interesting to note that a similar phase has been
served in the bulk liquid crystal composed of disklike mo
ecules@6,7#. In this liquid crystal phase, the molecules for
columns with the helical intracolumnar structure and t
short-range hexagonal positional order of the columns.
cording to Ref.@7#, the intercolumn separation is smalle
than the diameter of the disklike molecules with fully e
tended chains, and therefore the uniform orientationally
dered columnar phase should also be frustrated. As a re
the supramolecular structure is observed in which some
umns are characterized by random helical phases of the
ecules and are displaced in the vertical direction with resp
to the surrounding six columns which are all at the sa
height and have a single rotational degree of freedom.
analysis of these 2D amd 3D phases raises a question o
relative role of frustration and the positional and orien
tional ordering. It is not obvious how the frustration wi
manifest itself in a fluid 2D phase formed by tripod mo
ecules without any lattice structure. In this case, the m
ecules cannot ‘‘escape into the third dimension’’ to avo
frustration like in the bulk columnar phase. On the oth
hand, the formation of a regular supramolecular structur
also hardly possible. This problem may be interesting fr
the fundamental point of view and is currently under inve
tigation.
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