PHYSICAL REVIEW E 67, 061707 (2003

Orientational ordering and chiral symmetry breaking in organic monolayers composed of disklike
mesogenic molecules: Molecular theory and computer simulations
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Orientational ordering of disklike molecules on a flat surface is investigated using a molecular-statistical
theory and Monte-Carlo simulations. The theory is based on the two-dimensional orientational order parameter
for molecules with a threefold symmetry axis, and on a simple model interaction potential which has been
derived taking into consideration only the symmetry of basic molecular structure. The theory reveals three
different anisotropic phases. One of them exactly corresponds to the structure which has recently been ob-
served experimentally in self-assembling monolayers of discotic mesogenic molecules on a pyrolitic graphite
surface. This is a two-dimension@D) chiral anisotropic phase composed of nonchiral molecules. The phase
consists of three sublattices with different orientational order. One sublattice is orientationally disordered,
while the other two sublattices are ordered with the same scalar order parameter and different orientations of
the ordering tensor. Both order parameters of the directions of ordering are determined self-consistently by
minimizing the total free energy of the system. The detailed structure of this unusual phase is also confirmed
by the results of Monte Carlo simulations based on the same model interaction potential. The results of the
theory qualitatively explain existing experimental data and also shed some light on the origin of supramolecu-
lar structures observed in 3D columnar phases composed of similar molecules.
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[. INTRODUCTION perlattices and spontaneous helical ordering inside the col-
umns|[6,7].

Conventional thermotropic liquid crystals are usually At the same time little is known about two-dimensional
composed of rodlike or disklike molecules which can form a(2D) ordered phases which may be formed by disklike mol-
large variety of different phases with orientational and, par£cules on a surface. Such molecules have been observed to
tially, translational order. The simplest liquid crystalline form self-assembled monolayers at a liquid-solid interface

phase is the nematic phase which exhibits only orientationdf:9- In such monolayers, the molecular disks are parallel to
order of the primary molecular axes. Many rodlike me- the surface and thus there are no columns. In this case, the

dparticular point symmetry of the molecule is expected to be

sogenic molecules also form smectic phases which are ch - ; i
ore important for the phase formation and, in general, the

acterized by one-, two- or even three-dimensional positionarln

order. In such mesophases, the rodlike molecules are pack nstlg;Léletrfsgg?;tgsc:p&rgxzm:ﬁg| éu:t rg)r/‘nZ?r Isaoiirs?i\)nl/(r;]igthli(s.
in layers. Disk-shaped molecules, which normally have pla- ! Y y

. . . ; . normal to the molecular core should explicitly be taken into
nar rigid cores and flexible chain tails, also form nematic

h I | haksls where th lecul account. In particular, such molecules should exhibit 2D ana-
phases as well as columnar phases where the molecuiar log of the nematic phase, but with a threefold symmetry axis

cores stack into columns. The most commonly observed C%erpendicular to the surface. In general, such spontaneously
lumnar phases consist of triangular or rectangular arrays qfjered 2D systems provide us with important models for
columns with short-range fluidlike order inside each columney, molecularly designed materials with nanoscale structure
[2,3]. There exist also highly ordered columnar phases which1qy.
are similar to higher smectic phases and to three-dimensional Recently, interesting anisotropic phases have been ob-
plastic crystal§4]. As discussed by Bodej8] and Guillon  served in self-assembled monolayers formed by a series of
[5], the columns are formed due to an attraction between thaiscotic mesogenic molecules on a pyrolithic graphite sur-
flat aromatic cores of the disklike molecules while the fluid-face[11]. The corresponding disklike molecules used in the
ity of the phase is determined by the long flexible chainsexperiment are symmetrically alkoxy-substituted triph-
attached to the core. In highly ordered phases, this fluiditenylenes which possess a threefold symmetry axis perpen-
appears to be strongly restricted. It is interesting to note thadicular to the flat core. Using scanning tunneling microscopy,
the strong repulsion between sufficiently long flexible chainsCharra and Cousty have observed the emergence of a spon-
may result in a rather complex structure of some columnataneously chiral anisotropic phase when increasing the trian-
mesophases. This structure may include several different sgular aspect ratio of the molecules which is determined by
the alkoxy chain length. The schematic structure of this 2D
chiral phase, composed of nonchiral tripod molecules, is pre-
*Former address: Institut ‘fuTheoretische und Angewandte sented in Fig. 1(StructureB). In this phase, the molecular
Physik, Universita Stuttgart, Pfaffenwaldring 57/V1, 70550 Stutt- centers are located on the sites of a hexagonal lattice but, at
gart, Germany. the same time, the molecules form three inequivalent super-
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FIG. 2. Coordinates used in modeling the interaction potential
between a pair of tripod molecules.

[11] except for some qualitative analogies with frustrated
triangular Ising net§11,19. There exists also an analogy
with the 2D nematic ordering. It should be noted, however,
that the triangular(“tripod” ) phases presented in Fig. 1
should be characterized by an order parameter, which is a
symmetric third-rank tensofas proposed by Hed20] for
tetratic fluidg, while nematics are described by a second-
rank tensor order parametg1]. In this paper, we investi-
gate the ordering of tripod molecules on a surface using a
molecular-statistical theory and computer simulations. We
show that the relatively complex 2D chiral phase observed
by Charra and Cousfyi1] can be found both in Monte Carlo
simulations and in a mean-field statistical theory, employing
a simple and rather general model interaction potential be-
tween nonchiral molecules which can be derived taking into
consideration only the symmetry of the basic molecular
structure. We also compare the transition temperatures and
the temperature variation of the order parameters for differ-

Structure C . | .
ent superlattices, as obtained from the molecular theory, with
FIG. 1. Three distinct orientationally ordered structures formedthe results of the computer simulations.

by tripod molecules located on the sites of a hexagonal lattice. The The paper is arranged as follows. In Sec. Il, the structure

unit cell is marked by dashed lines. Structéxehomogeneous con- of the orientationally ordered phases formed by tripod mol-

figuration. StructureB: 2D chiral configuration which corresponds ecules on a hexagonal lattice is considered and expressions

to the structure observed by Charra and Cousty. Stru@ufeus-  for the corresponding tensor order parameter are derived. In

trated honeycomblike structure. Sec. I, we derive a model potential of the interaction be-

lattices which differ in their orientational order. One super-tWeen tripod _mo_lecules with threefold symmet_ry axes. This
model potential is then used in Monte Carlo simulations of

lattice is orientationally disordered while the two others are S ) !
highly ordered, with antiparallel orientation of the nearestthe three distinct tripod phases. In Sec. IV, a mean-field

: . : theory is developed which describes the transition from the
neighbors. The 2D chirality of this phassee Ref[12] fora . : i X . .
mo?e detailed discussion gf 2D chiEaI syste)rissd[ete]rmined isotropic to the orientationally ordered tripod phase, taking

by the fact that the ordering directions in two superlatticesmto. consideration t_he spontaneou_s formation of three In-
are not parallel to the axes of the underlying hexagonal |at9qualent superlattices accompanied by spontaneous chiral

tice formed by molecular centers of mass. These experimer?ymmetry breaking. The results of this theory are compared

tal results raise a number of interesting questions about th 't.h the simulation data In Sec._ Vi the expression for. .
particular intermolecular interactions which may be respon-C iral olrder parameter fc_)r the orientationally ordgred tripod
phase is derived and discussed. Some concluding remarks

sible for the formation of 2D chiral phases composed of non!! . . . L :
chiral molecules. Recently, these effects have attracted si peluding a discussion of the existing experimental data are
' resented in Sec. VI.

nificant attention, and a number of chiral textures have bee
observed in liquid crystal filmg13—-15 and Langmuir Il. ORDER PARAMETER OF THE TRIPOD PHASE
monolayerd16-18.

At present, there is no theoretical description of the new In this section, we derive an expression for the tensor and
2D chiral anisotropic phase observed by Charra and Coustycalar order parameters of a 2D orientationally ordered phase
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composed of triangulaftripod) molecules. Such a molecule
is schematically represented in Fig. 2. It has three equivalent

chains and possesses a threefold symmetry axis perpendicy:3, y=x,y and the bar denote the normalized sum over all
lar to the molecular plane. The homogeneous anisotropic 2Bossible permutations of the indices 1,2,3 because the vec-
phase composed of such molecules also possesses a threefgjgs a;, &, andag are equivalent. One notes also that the
symmetry axis and is characterized by three equivalent magmit vectorsa,, a,, anda; are related to each other because
roscopic directions within the plane, which make an angle othe molecule is assumed to be rigid. Then the tehggy can

120° with each other. It is interesting to compare the symye expressed in terms of a single unit vecaotaken arbi-

metry of this new tripod phase with that of the familiar 2D tyayily from the set &,,a,,as). It can be shown after some
nematic phase composed of rodlike molecules. The 2D nemygepra that the tensoy,z, can be expressed as

atic phase is characterized by the twofold symmetry axis and

taﬁy: alaaZﬁa37! (5)

as a result there exists only one nonpolar macroscopic direc- topy=8adpa,— §(200pyT 850 ,,+a,5,p), (6)
tion. By contrast, in the 2D tripod phase all three macro-
scopic directions are polar. where the unit vectoa is in the direction of a side chain of

Now it is possible to derive an expression for the orderthe symmetric tripod molecule.
parameter of the tripod phase using this weak analogy with The tensott .z, , which characterizes the orientation of a
the 2D nematic phase. The nematic phase is described by thépod molecule, is analogous to the tenagaﬁ—%b‘aﬁ fora
tensor order parameter rodlike molecule. Thus, using this analogy, we can define the
macroscopic tensor order parameter of the tripod phase as

1
Qaﬁ:S<”a”B_ §5a5)' (1) Topy=(2u8p8,— 1(2,05,+ 8384, Ta,04p)).  (7)

whereSis the scalar order parameter which characterizes the The averaging in Eq(7) can be performed explicitly us-
degree of ordering and is the unit-vector director which N9 the symmetry of the anisotropic tripod phase and without
specifies thenonpolaj direction of ordering. The order pa- €Mmploying any particular microscopic model. Indeed, &9.
rameterQ,,; is a symmetric and traceless tensor, and @y.  ¢@" be rewritten as

is valid only for the three dimensions, nematic phase as in

3D Tré,z=3. In the 2D nematic plhase, the tensor order Taﬂy:f tagyf1(¥)dy, 8
parameter is proportional ta,nz—3;4,5 because Td,4
=2.

wheref () is the orientational distribution function of the
tripod phase and the angle specifies the orientation of the
tripod molecule. As mentioned above, the anisotropic 2D
S3p=(P,(c0s0)) 2) phase composed of tripod molecules possesses a threefold
P ’ symmetry axis. Therefore, the orientational distribution func-
where P,(x) is the second Legendre polynomial and éos tion of such phase should depend on cgs@herey is the
=(a-n) where the unit vector is in the direction of the angle between the unit vectarand a macroscopic director
primary molecular axis. In the 2D nematic phase, the definilchosen from the set of three equivalent directdrg,l)
tion of Sis different because instead of Legendre polynomi-Which make an angle of 2/3 between each other

als one uses the ordinary Fourier expansion. As a result,  The tensot,, in Eq. (8) depends on the componerats
[see Eq(6)] which can be expressed as
S,p=(c0s 20). ®)

In Eq. (1), the scalar order paramet8iis defined as the
following ensemble average:

a,=n, cosy+m, siny, 9)
Finally, the tensor order paramef@,; can be written as the ) o )
following average: where the unit vectomL n. Substituting Eq(9) into Eq.(6)
and then into Eq(8), one obtains

1
Qup= < 2,85~ o 5aﬁ> ; @ Tapy=nangn,{COSy)+ (N mgm, +nzm,m,+n,m,mp)

x(cosy sirty), (10)

whereD =3 for the 3D nematic phase am=2 for the 2D
one. where we have taken into account that the average of any

One notes that the orientation of a nonpolar rodlike mol-odd function ofys vanishes, because the distribution function
ecule can be specified by the second-rank teagay which  f;(cos 3)) is even iny.
determines the form of the tensor order parametg&rsand In Eqg. (10), the components of the unit vector can be
(4). The orientation of a symmetric tripod molecule can bedirectly expressed in terms of taking into account the fol-
characterized by a symmetric third-rank tensor which deiowing relation which is valid in the 2D geometry for any
pends on the unit vectoes , a, andag in the direction of the  two orthogonal unit vectora andm,
first, second, and third molecular “legs,” respectivesee
Fig. 2. This tensor can be written as N Ngt+mMMg=3,4. (11
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Substitutingm,mz= 5,5~ Nn,N; into Eqg. (10) one obtains, direction of any one of them. In the laboratory frame, the
after some straightforward algebra, the following expressiororientation of such a molecule can also be specified by the

for the tensor order parameter of the tripod phase: angley; between the vecta; and some macroscopic axs
In general, the interaction potential between two tripod mol-
eculesi andj depends both on their unit orientation vectors
a and éj and on the intermolecular separation vectgr.
(12)  Thus the pair potential(i,j) is U(a,a;,r;;). In a mono-
Here the scalar order parameget (cos 3)). This formula  layer, all three vectors;, &, andr;; are parallel to the same
can be compared with the corresponding expression for thplane, and in this case the relative orientation of the two
order parameter of the 2D nematic ph&e(cos 2)). The  molecules can be specified by two angigsand ¢; (see Fig.
orientational part of the tensor order parameter has exactly), which determine the orientation of the a>€¢sand£1j with
the same mathematical form as the molecular alignment terrespect to the intermolecular separation vectpr Then the
sor t,z, [see Eq.(6)] because both tensors represent théinteraction potential is a function of the angi¢sand ¢; and
same symmetry group. One notes that the order parametgf the intermolecular distance rij, i.e, U(,j)
(12) is relatively cumbersome. However, the coupling be-=y (g, (;.1i;). Here = — i and ;= ¢;— 4sj , where
tweenT,z, and the molecular alignment tensor can be eXthe anglesy;, ¢;, and ¢;; denote the orientation of the

pressed in a very simple form, vectorséi , éj , andrj; , respectively, in the laboratory frame.
For further considerations, it is more convenient to use the
T = . 1 . . !
aprlapy=(C0S 3))C0S 3) (13 equivalent variablesp;— ¢;= i —¢; and ¢+ ¢;= i+
This means that the orientational distribution function, which ~ 2¥ij - Here the angleb; — ¢; specifies the relative orienta-

may only depend on the coupling between a molecular Ori;ipn of the two flat molecules, which does not depend on the

entation and the tensor order parameter, is indeed a functidli"€ction of the intermolecular separation vedtsee Fig. 2

of Scos 3. The interaction potential should be a perlo_dlc function of
The tensor order parametéir?) can be used to show that the angless;—&; and ¢+ ¢; and, therefore, it can be ex-

the transition from the isotropic to the tripod phase can be oP@nded in a double Fourier series. One notes that a flat mol-

second order. Indeed, one can readily see that it is impossibfFule 0fCs symmetry coincides with itself after a rotation by

to compose a cubic invariant in the Landau expansion of th&" angle of+2a/3 about the symmetry axis. The interaction

free energy using a symmetric third-rank tensor. potential between such molecules should be invariant under
Finally, one notes that so far we have considered only th€Uch rotations. Thus it follows from symmetry that the inter-

order parameter of the homogeneously ordered tripod phas@?t'on potential must be invariant under the transformations

The more complex phases, presented in Figs) and Xc) i =#i+27m/3 and ¢;=¢;+27n/3, wherem and n

are composed of three different superlattices and a transitiod® INntegers. The corresponding transformation properties of

from the orientationally disordered phase involves both orithe potential U(¢;—¢;,¢i+¢;,r;j) can be expressed

entational and translational symmetry breaking. In this casédS U(#i— ¢+ 2mm/3,¢i+ ¢+ 27n/31ri)) =U(di— b; , i

the order parameter of an ordered superlattice can be ext ¢;.ri;) for anymandn. One concludes that the Fourier

1
Topy=1(COS 3) nanﬁny—Z(na5M+n35a7+ny5aB) .

pressed as a set of three density waves, expansion of the potentidl (¢;— ¢;, ¢+ ¢;,r;;) contains
. only the functions cdSm(¢;— ¢;)] and cof3n(4 + ¢)]. The
PO =00 T s, (14)  functions sifi3m(¢—¢;)] and sifidn(¢+¢;)] are not in-

cluded because for nonchiral molecules the 2D interaction
where the tensofl 4, is given by Eq.(12) and the wave potential should be invariant under a simultaneous sign in-
vectorsk; (j=1,2,3) are shown in Fig. 2. The angle betweenversion of the angleg; and ¢;. Thus any interaction be-

any two vectorsk; is equal to 27/3 and the Iengtij| tween two tripod molecules can be expanded as
=2m+/3/a, wherea is the period of the underlying hexago-
nal lattice. U(di— by, dit by.rij)
1. MOLECULAR MODEL AND MONTE CARLO = D Upp(rij)cog3m(¢;— ¢;)1cog 3n( i+ ;)]
SIMULATIONS m.n=0
(15

A. Intermolecular model interaction potential

Let us consider the intermolecular pair potential energy
between two tripod molecules depicted in Fig. 2. As dis-Taking into consideration only the first terms of this expan-
cussed in Sec. II, the orientation of a tripod moledutan be  sion, one obtains the following simple model interaction po-

specified by the two-dimensional unit vectgrwhich is in ~ tential:

the direction of a molecular le@ee Fig. 2 In this paper, we

consider flat tripod molecules which possess a threefold S B

symmetry axis. In this case, all three legs of a given mol- UGi,J)=Uo(ri)) +U_(rij)cod 3(¢i — ;)]

ecule are equivalent and the unit vecrcan be in the +U (rij)cog3(di+ ¢))]. (16
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In this and in the following section, we show that the modelsigns of the coupling constants_ andU ., are expected to
potential(16) can be used both in computer simulations anddepend on the length of the molecular side chain. For suffi-
in a mean-field theory to obtain the structures presented igiently long chains, which may overlap at some particular
Fig. 1. relative orientations of the two molecules, the constants
Let us first consider the 2D phase with homogeneous oriyy >0 andU, <0. It is shown in Sec. 11l B below that the
entational ordefstructureA in Fig. 1). In this phase all mol-_ experimentally observed structuBepresented in Fig. 1 can
ecules, on an average, are parallel to each other, and a sSimglg optained in computer simulations using the model poten-
interaction potential that stabilizes this structure is provideq;g (16). A simple mean-field theory of such an anisotropic

by the second term in Eq16), with a negative coupling 2D phase, based on the same pair pote(tié), is presented
constant U _<0). Thus the model potential for structuke in Sec. IV

can be written as We note that the properties of an anisotropic two-

dimensional phase, composed of tripod molecules with suf-
ficiently long tails, are determined by frustration. In fact, it is
generally impossible to find a homogeneous orientation of all
molecules which corresponds to a minimum of the interac-
tion potential for all pairs of nearest neighbors. The interac-
tion energy between two parallel tripod molecules strongly
analogous potential for a 2D system of rodlike mobcubsdepends on the orientation of the molecular axes with respect
(which possess &, symmetry axis would be of the form to the mtt_armolecular vector as can be seen from the st_ructure
U(i,j)=Uo(ri;) —J co$2(¢y—¢;)]. This potential is charac- of potent|§1|(16). For example, fo¢.i= ¢;=0 the interaction
terized by the periodr and is a 2D analog of the so-called €nergyu(i,j)=Uo+U_+U.., while for ¢;=¢;=m/2 one
Maier-Saupe interaction potential for rodlike molecules,obtainsU(i,j)=Uqo+U_—U, . Thus, even if the interac-
known in the theory of liquid crystalil]. tion energy is negative for a given pair of nearest neighbors,
The physical meaning of the potentidl7) is that all three it may be positive for some other pair due to a repulsion of
legs of two neighboring tripod molecules want to be parallelinterfering tails. For instance, we observe the honeycomblike
to each other, independent of their orientation with respect t§tructureC in Fig. 1 in computer simulations, when assum-
the intermolecular separation vector, e.g., due to a long-rang8g bothU. andU_ to be positive. . _
anisotropic attractive interaction. This can be reasonable if As a further simplification, we consider only interactions
the legs are sufficiently short and, as a result, any two neareBgtween nearest neighbors and assume that the molecular
neighbors on the hexagonal latti¢eee Fig. 1 can rotate Centers are located on the sites of a hexagonal lattice as it has
freely with respect to each other. For longer legs, there existdeéen observed in experimejiitl]. The hexagonal lattice ap-
a strong repulsion between neighbor tripod molecules, whiciparently results from an interaction between flat molecules
corresponds to interpenetration of the two legs. This repuland a graphite substrate, and there is no experimental indi-
sion takes place at some particular relative orientation of th&ation of the existence of a fluid phase. Thus we consider
two molecules with respect to the intermolecular separatio®nly two-dimensional plastic crystal phases in which the an-
vector, and it can be accounted for by the third term in EqiSotropic molecules possess one orientational degree of free-
(16). dom.
Let us consider in more detail the interaction between two
molecules depicted in Fig. 2, assuming that the legs are suf- _ _
ficiently long to overlap at some particular orientations. On B. Monte Carlo simulations
one hand, the neighboring tails with long axas and a,; In order to examine the stability of the structures in Fig. 1
(see Fig. 2want to be parallel due to the anisotropic attrac-we performed 2D Monte Carlo computer simulations for a
tive dispersion interaction. Thus the interaction potential ismodel system consisting of 1200 tripod molecules. The mo-
expected to take its minimum fap; — ;= 7/6, i.e., for an-  lecular centers of mass were fixed on the sites of a hexagonal
tiparallel orientation of the vectois; anda,; in Fig. 2. This  |attice, whereas the tripods were allowed to rotate freely in
can be achieved if the coupling constaht is positive. plane about thei€; symmetry axes. The system was placed
On the other hand, there should be a strong repulsiointo a simulation box of the hexagonal shafsee Fig. 7
between the two molecules if the two neighboring tails overwhich reflects the symmetry of the underlying lattice model.
lap, i.e., if botha;; anday; in Fig. 2 are in the direction of the  Periodic boundary conditions in all three directions were em-
intermolecular separation vectoy; . In this configuration, ployed by surrounding the simulation box with a chain of
¢i=0 and ¢;=m. The repulsion between two tripod mol- outer molecules. These were periodic images of molecules
ecules due to an overlap of the neighboring tails is describethside the box, shifted by one box period in the appropriate
by the third term in Eq(16). For ¢;=0 and ¢;=, one direction. The Monte Carlo simulations were performed for
obtainsU ;. cog3(¢4i+¢;)]=—U, and therefore the coupling various temperatures between 0.1 and 3.0, with a tempera-
constantU , should be negative. ture interval of 0.1. For each temperature, the simulation run
One concludes that in the first approximation, the interacconsisted of 5000 equilibration cycles followed by another
tion between two tripod molecules can qualitatively be de-5000 cycles to evaluate the average order parameters and
scribed by the simple model potentid6). The ratio and the overall orientations. For controlling thermodynamic equilib-

Ua(i,j)=Ug(rij) —Ua(rij)cog3(di— ¢)]. (17

ForU,>0, the potential takes its minimum fef = ¢; , i.e.,
for parallel molecules. We note that in this potential the
threefold molecular symmetry is reflected in the function
cog3(¢—¢;)], which has the periodicity of 2/3. The
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TABLE |. Dimensionless parametrizations of the model interac- 1z

9,
tion potential between a pair of tripod molecules corresponding to o ®00, N
the structures in Fig. 1. % 0.8 °°o¢°
= %o
Structure of Fig.1 Parametér_ Parametel < 0.6 °°
<
_ o8
g 11 —01 g 4 ®
g= °
C 1 1 5 02
%ww
000009
0

rium, both the instantaneous energy and the order parameter
and overall orientation were monitored each tenth of the
Monte Carlo cycle.

The tripod molecules were interacting via the pair poten- |G, 3. Scalar order paramet8ws dimensionless temperatufe
tial (16) introduced in the preceding section. Only nearesfor potential parametrizatiold = —1 andU, =0 (in dimension-
neighbor interactions were taken into account, i.e., the totakss unit3, corresponding to structus of Fig. 1.
interaction of one molecule was the sum of six pair interac-
tions. Due to periodic boundary conditions, the molecules oHere W ,= y; — ¢; denotes the angle between the director and
the boundary of the box interacted both with real and imagehe x axis. After inserting Eqs(20), (21) into Egs.(18), (19)
molecules. As already discussed, we chose three distinct pand some trigonometric algebra, we find
rametrizations of the model potentidl6) to investigate the

temperature

different phases of Fig. 1. Because the molecules are fixed on (cos ;) =cos 3V (cos3y)=Scos3V,, (22
lattice sites and the nearest neighbor distance is a constant,
there is no dependence of the potential parameters on the (cos 3piy) =sin3¥(cos 3f;)=Ssin3¥,. (23

intermolecular scalar distaneg, . Therefore, the parameter

U, merely denotes an arbitrary shift of the energy referencd he equations above now enable us to determine the scalar

point. We set it equal to zero. The choice of the parameter§rder parameteS and the angle¥, which describes the
U_ andU, , corresponding to the structurésB, andC of  director orientation, from averages calculated in the labora-

Fig. 1, is summarized in Table I. tory system,
For a detailed investigation, we calculated the temperature > 5
dependence of the scalar order param8tex cos 3y;) from S= V(cos 3ix)”+(cos )7, (24
the simulation data. Herg; denotes the angle between the
~ o . 1 (cos3yy) 1 (cos 3iy)
a;; axis of an individual tripod molecule and the average ¥ _=_arcta =— arcco . (25
; P "3 Zcos i) 3 Ecos&pi )
preferred orientatiom. Apparently, S cannot be evaluated
from its definition, because the director axiss not known We start the discussion of the simulation results with the
a priori. In the following, we derive a procedure of how to parametrizationt) = —1 andU, =0 which yield the ho-

determine both the scalar order parameter and the direCt‘Pﬁogeneous structurk (see Fig. 1 Here all molecular axes
from simulations. As a starting point, we state that the orien—are, on an average, parallel to each other. Figure 3 shows the
tations of the molecular axes; are known in the laboratory temperature dependence of the scalar order parameter. It is
frame, wherey;, = ; and ;= w/2— ; are the angles be-

tweena,; and thex and they axis, respectively. Due to trigo- 60
nometric identities, we can evaluate the averages

(c0s 3fix) = 4((ay;- %)% —3((ay; X)), (18

(cos 3’//iy>:4<(é—1i'9)3>_3<(5-1i'9)>- (19

Now we express the unit vectoksandy of the laboratory
frame in the orthongrmal frame_n(ni) spanneq by the di- 0 2500 5000 7500 10000
rector and the vectan, perpendicular to the director,

director angles [deg]

Monte Carlo cycles

x=ncos¥,+n,sin¥,, (20 FIG. 4. Instantaneous director angles during a Monte Carlo run

at temperatureT=0.1 for potential parametrizatiob)_=1 and
o . U, =—1 (in dimensionless uni}s Solid, dashed, and dotted lines
y=nsin¥,—n, cos¥,,. (21)  correspond to the three superlattices in Fig. 3.
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FIG. 5. Instantaneous order parameters during a Monte Carlc R T AAT
run at temperaturé= 0.1 for potential parametrizations_=1 and RSP T RS
U, =—1 (in dimensionless unijs Solid, dashed, and dotted lines AXA PR Ay
correspond to the three superlattices of Fig. 3.

AYALAy LAy AyrAyryridydryda

close to 1 for very low temperatures and then decays with
increasing temperature. The transition to the isotropic phase FIG. 7. Molecular configuration from a Monte Carlo run at tem-
is at aboufT.=1.9. This value is considerably smaller than peratureT=0.1 for potential parametrizationd =1 andU, =
the mean-field transition temperature f=3.0. We will ~ —1, corresponding to structuiin Fig. 1. The hexagonal simula-
discuss this discrepancy further in the following Section.tion box contains 1200 tripod molecules. A chain of periodic image
Due to limited system size the order parameter in the isotroiolecules outside the box is also shown.
pic phase retains small, but finite values.

StructuresB and C of Fig. 1 are more complicated. As entation fluctuates aroune-30° at the beginning of the
explained in the preceding section, they can be described &mulation run assumes a stable orientation+®#0° by a
a superposition of the three superlattices imposed on the bfump after 1500 cycles. To analyze the orientational order on
sic hexagonal lattice. The superlattices are distinguished bihe superlattices, we thus decided to sort the order param-
different average orientational order of the respective moleters in Fig. 5 according to their magnitude for each Monte
ecules. To investigate this behavior, we calculated the ordetarlo cycle. The averages over the run were then calculated
parameterS and the director angle’,, from Egs.(24) and  from the sorted order parameters. In this way, we obtained a
(25) separately on the three superlattices. A very interestingnaximum, medium, and minimum order parameter.
feature of the system is revealed from Figs. 4 and 5 which |n Fig. 6, the temperature dependence of the three order
plot the average director angles and the scalar order pararparameters introduced above is plotted for potential param-
eters for the three superlattices during the Monte Carlo rurtersU_=1, U, =—1. In the low temperature regime, the
(parametrizationd) =1, U, =—1, temperaturéel=0.1).  plot clearly reveals that the maximum and medium order
Obviously, there are two superlattices with clearly definedparameters are quite high compared to the minimum one.
director angles of- 30°, while the average orientation on the The latter corresponds to the disordered superlattice, i.e., the

third superlattice is strongly fluctuatingrig. 4. However,  strong fluctuations of the director angle in Fig. 4. On the
the superlattices themselves are not permanent. Instead, they
are interchanging their fes. E.g., the superlattice whose ori-

1
w0 °<>°
o Ky 79,

1 [«D] X oo
E :000 46_3 0.8 )(xxx00
) X, O — X, @
= 08 X, 00, = X®
o X%y 0o < 0.6
= xoo 5 5
& 0.6 Xg S, X

&
g x o 04 XO
0.4 2 < - x
%6 ) x@ E - o/n] Q
e R0 o on X 0.2 ~C 4
5 02 ﬁﬁﬁ © Som, %o
RR:
0 0
0 05 1 15 2 3 0 05 1
temperature temperature

FIG. 6. Scalar order paramete8y's dimensionless temperature
T for potential parametrizationd _=1 andU, =—1 (in dimen-
sionless units corresponding to structuf® of Fig. 1. RhombsXx
symbols and squares correspond to three different sublattices.

FIG. 8. Scalar order paramete®s/s dimensionless temperature
T for potential parametrizationd _=1 andU , =1, corresponding
to structureC of Fig. 1. RhombsX symbols and squares corre-
spond to three different sublattices.
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RSAARAAEARLARLALLARRN NS the disordered superlattice is clearly recognizable. We notice
A A AL F A P Ar <y »= X%
NIRRT that even at low temperatures the structure is not perfect,
)?Sjr:Jtﬁ:r:yfﬁxr¢xf:y;:ﬁw* . t d d f t f .
x.( LALFPLLFr LA FrL A r<LFrL L rdxyrCr>x» Instea 1 some deiects are Ormlng.
«x:;*»x* >f: ;J:* ¢ ::;X*
: fﬁﬁm&ﬁﬂﬁﬁﬂﬁiﬁﬂi>L§Y9ff??ﬁuﬁi
LA F LA AP r A r r A R r LA F L r A A r L r m <y 4 X+ IV. MOLECULAR-STATISTICAL THEORY
AEALAPLAFPLFFrPLLPIrARPrL I >rLrFrLr<r>>r<>rXyr
A< A ¥y FALPFIAFrAL PP« Y ¥« . . ) )
;* {AZ*,}:JSL}*{J{J{g{f{{{{{fS,*Xj&Z}}EA Let us first consider the simple structukepresented in
< T T I OO G Fig. 1. This structure corresponds to the anisotropic 2D
tf**»«y»<>y<r»«»x«»nfrv«»r«»*«»r<4dfr»x« . . . i ..
B ASAA AR AN ARSI AN NSRS AR AR Y phase in which all lattice sites are statistically equivalent.
MSSIAMVERISAIAMIRYRARNI AT AR YA From the molecular-statistical point of view, the phasés
I P FPLAFrL P rLArd A rL A >rAL Y FrL>rALPr YL rr<tL L r< M) . . . . . .
FXALT ALY LA F L r ALy 2L r L r b r L r e LAy L r X ¥ A characterized by the one-particle distribution function
PR T e TR )-*-(;(»);)-):(«* -(Q—_()—:):r{)—;).)-_()-)_-()_)—{)-;()_y{)-*-(* *>- . A .
- Z*J»*«*J»YJ&ZX<ﬁH RO ADELIAS fl.(z/;j), where thg angley; specifies the orientation of the
RN SRR RISt il e tripod moleculei in the laboratory frame. By contrast, the
A X< « < <« LFrLL L rLLAFrTLrLr A2 . . . . .
>4 - > YRR AY LA ARt A phaseB in Fig. 1 is composed of three inequivalent superlat-
rxgri}*< » < FALFILFrL P FEL I A ¥ i 3 i ) i
v, kﬂ*x;g*{}ﬁ*j**4*jg*j,ﬁ*,*;j:**j;:;,(ﬁ* t!ces which are characterized by different average c_)rlenta-
AWV ISATsRRRt Al A tions of the tripod molecules. Such a phase is described by
AXFALL PP AL L AL »4-()_)-.(»).4* .(*.,*,.*.()}'()Z{.(* th dﬁ . . | d b . f . rf§f')
T A A ree different orientational distribution functiorf§” (¢;)
*R»rﬁ>f«»4r>5*»4r»fvr<f»

(s=1,2,3), which correspond to the three inequivalent su-
perlattices. It should be noted that all sites in all three super-
FIG. 9. Molecular configuration from a Monte Carlo run at tem- lattices in the phasB are still occupied by equivalent mol-

peratureT=0.1 for potential parametrisatiod =1 andU, =1,  ecules and thus the pair interaction potentidl,j) remains
corresponding to structur€ of Fig. 1. The hexagonal simulation the same for all pairs of nearest neighbors. The general form
box contains 1200 tripod molecules. A chain of periodic imageof this potential is given by Eq15). In this section, we will
molecules outside the box is also shown. use the simple model potenti&l6) which is obtained by
taking into account the first terms in expansit®b). The
other hand, the molecules on the remaining two superlatticesame model potential has been used in the simulatises
are well aligned at director angles af30°, respectively. Sec. ll).
They cause the maximum and medium order parameters to Taking into account only interactions between nearest
assume high values which are close to each othiy. 6). neighbors, the internal enerdy per molecule can be ex-
All together, this exactly corresponds to the structure ob{ressed as a sum of averaged interaction energies between all
served by Charra and Cousty in the 2D system of discoti@airs of neighboring molecules. One notes that in the pBase
molecules[11]. This structure is presented in Fig.(4truc-  any two nearest neighbors belong to different superlattices.
ture B). Thus our model potential is sufficient to stabilize Thus there exist only three inequivalent pairs of nearest
this unusual partly disordered structure in Monte Carlo simuneighbors which we denote &$,2), (2,3), and(1,3), where
lations. With increasing temperature the order is again dethe indices andj (i,j=1,2,3) correspond to different super-
creasing, similar to the homogeneous structdrérig. 3.  lattices. Each molecule which belongs to an arbitrary super-
The phase transition now occurs at a lower temperaturdatticei is interacting with three nearest neighbors belonging
AboveT.=1.5, the order in all superlattices is mainly lost. A to the superlattic§ #i, and with three nearest neighbors
snapshot of the molecular configuration for the system abelonging to the superlattidej #i. Now the internal en-
temperaturel =0.1 is presented in Fig. 7. ergy U of the phaseB in the mean-field approximation can
Finally, we consider the potential parametrizatibh be written as
=U,=1. The simulation results are analyzed in the same
way as in the previous case, namely, by sorting the order
parameters on the three superlattices according to their mag- U/NZBJ DU =tz i+ 2= 29n)
nitude. The temperature dependence of these sorted order

— 6 ¢ ¥
LFrALALFPALFPL Y rFLAPr<r =< F< >

parameters is fairly similar to the one corresponding to struc- X 1 () difrr i

ture B (Fig. 8). Again, in the low temperature regime there

are tvv_o superliattices \_/vith high ordgr parameters.while the +3f f(11>( YU (P — tha, thy+ h3— 24019)
order in the third one is low. The director angles in the or-

dered superlattices now are60°, which means that these Xt () dipdifs

molecules are aligned according to the crystallographic axes

of the hexagonal lattice. As a result, the phase appears to be @)

nonchiral. The disordered superlattice corresponds to a frus- +3f 37 () U (o= i3, o+ h3— 2423
tration effect: the molecules in the centers of the hexagons

which are formed by the remaining two superlattices are ori- X 13 ()i difs, (26)

entationally disordered because this is the only way to reduce

the total free energy of the whole systéstructureC in Fig.  where the angle; specifies the orientation of moleculand

1). Again, a snapshot of the configuration at temperafure the angley;; specifies the orientation of the intermolecular
=0.1 is shown in Fig. 9. The frustration of the molecules onvector between the neighboring moleculesnd j. Here
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f(li)(z,/;i) is the orientational distribution function of the super-

lattice i, and the pair interaction potentid(i,j)=U(¢,
— i+ — 24;) is given by Eq.(16).

Now the free energy can be determined using the gen-

eral thermodynamic expression

d(BF)
U= B (27)

where8=1/(kgT) and where the internal enerdyis given
by Eq.(26). The solution of Eq(27) can be expressed as

FIN=kgT f FPpIn £9(gr)dyy
+keT f fP2)In 1P(y2)dy,

+kBTf fE(ga)In 13(g)dipp+3U 5+ 3U55

+3U,3, (28

where

Uij:f FOWOU =g i+ o= 20 TP (g dyidy;
(29

and wheré #j (i,j=1,2,3). One notes that E¢R6) for the
internal energyJ can now be derived back from Eq&7)—

(29), taking into account that the distribution functions
f(l')(wi) should correspond to the minimum of the free en-

ergy functional(28). Minimization of the free energy yields

the following equations for the orientational distribution

functions:

f&‘)<w-)=3exp{—ﬁu<” ()} (30)
i Zi MF i ’

where the mean-field potential-(;) are given by
Uit (gn) :3f U (1= by 1+ tho— 240 T2 () i

+3f U1~ s, 1+ tha— 2419 F 3 (r3) difs,
(31)

u<M2>F<¢2>=3f U (o= by, ot 1= 2901 (91 digy

+3f U (o= tha, o+ h3— 24029 T3 (4h3) d s,
(32

PHYSICAL REVIEW EG67, 061707 (2003

U9 =3 [ Ul v+ 1= 2091

+3f U(gha— o, b3t o= 2429 T2 (gho) dps,

(33
with the pair interaction potential
U(i,j)=Ug(rij) +U_(rij)cod 3(¢i— )]
tUL(ripcod3(¢i+ ¢ —2¢)]. (34

As discussed in Sec. Il, the orientational distribution func-
tions f{" = f{)(cos 3)) because they should depend only on
the coupling between the molecular ax@sa,,a; and the
third-rank tensor order paramet€y,;, [see Eq(13)] of the
phaseB. Here ¢; is the angle between a molecular agjs
and a macroscopic directdr. It is important to note that,
due to the symmetry of the phase, one may use any director
from the set [;, I, I3) without changing the mathematical
form of the free energy function&28).

The expression for the pair interaction potent{&K)
U(¢i— &, i+ j—2¢;;) can be simplified if one considers
only the interactions between the nearest neighbors on the
hexagonal lattice. In this caseyf=2mn for all pairs of
nearest neighbors (), wherenis an integer. As a result, the
second term in Eq34) can be rewritten abl, cog3(;+ ¢,
—2¢4)]=U, cos(34+3y;+2mn)=U,coq3(+ )], i.e., the
pair potential does not depend on the “bond” angtg in
this case and can finally be expressed as

U(i,j)=Uq(rjj) + U cod 3(¢i+ o) ]
+U_cog3(¢i— )]

Now one should take into account that different superlat-
tices may be characterized by different average orientations
of the tripod molecules. In other words, different superlat-
tices may correspond to distinct directors. In this case, the
orientational distribution function$(1')(¢) actually depend
on the difference/— 4,9, where the angle),, specifies the
orientation of the director of the superlatticén the labora-
tory frame. Thusf{"(¢) =) (y— i) = £ (cos 3¢/~ ip)).
Substituting this expression together with Eg5) into Eq.
(31), one obtains

(39

URE(#1)=3U . cos[3(4i + #j0)1S;+3U -
xcos[3(i— j0) 1§ +3U
X cog 3(¢i+ o) 1S+ 3U -
X cog 3( i — o) 1Sk,

wherei#j#k (i,j,k=1,2,3) andS; are the corresponding
orientational order parameters given by the following equa-
tion:

(36)

s=f cos (¢— i) 1TV (p— tio)dehio. (37
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In the derivation of Eqs(36) and(37), we have taken into and
consideration that the identity

Zozf exp(—68(U_—U,)cos 3y}tdy. (46)
fCOS:ilﬂ. lp])fl(‘ﬂ] (ﬂjo)d‘ﬁj

Equations(42) and (43) describe a second-order orienta-
=Coi3(¢i1l/fjo)]f cod 3(¢;— th0) 1f 1 (¥~ ¥j0) A, tional phase transition and their numerical solution is pre-
sented in Fig. 1. Thus in this case, the system undergoes a
(39 phase transition into the homogeneously orientationally or-
dered phase which does not split into sublattices. This phase
is valid for any functionf which is even ing; — i;o. corresponds to structur in Fig. 2. One notes that the ho-
One notes that the angles, in Eq. (36) are not arbitrary. mogeneously ordered phase may be stable only_if-U .
It is possible to obtain equations for the angles from the<, i.e., if the anisotropic attractiofcharacterized by the
general equation§30) and(36). Indeed, let us substitute the coupling constant) ) is stronger than the anisotropic repul-
mean-field potentialé36) into Eq (30) It follows that the  sjon between the tripod molecules. The second-order phase
orientational distribution funct|0|h on the left-hand side of transition from the 2D isotropic to the homogeneously or-
Eq. (30) depends onj; — ¢ (i=1,2,3) or, more exactly, on dered phase occurs kgTc=3(U,—U_).
cog3(¢s—tho)], as discussed before. At the same time, the (2) yo=7/6+27n/3, yjo=—m/6+2mki3 (i#]),
corresponding mean-field potential on the right-hand side ofvheren andk are integers. In this case, the superlattices
Eq. (30) depends on c§8(si+ #0)], wherej#i. However, andj are ordered in opposite directions. One notes that this is
the dependence should be the same on both sides 68@¢. possible because the orientational order parameter of the tri-
and this imposes some restrictions on the values of thgod molecules is polar, as discussed in Sec. Il. It should be
anglesyy; (i=1,2,3). As a result, one obtains the following noted that at this stage, the orientation of the principal axes

equations foryy; , of the third superlattic&k+ j #i remains undetermined. It is
. shown below that the third superlattice is disordered.
si 3(iot ¥10)1=0, (39 Now let us substitutel;o= m/6+2n/3 and ;o= — /6
) +2mk/3 into the expression for the mean-field potential
SI{3(io— #10)]1=0. (40 UKL of the superlattic. One obtains

Now Eqg. (36) can be rewritten in the form

Ubie(4) = (U3} S+ UicSIcod3(—tio)], - (4

U () =3(U s —U_)(S—S)siN3(y—tho)]. (47)

The order parametes, of the superlattick is given by
where

1
U;;=3U, cog 3(io+ tj0) ]+3U _cog 3(shio— o), Sk:Z_kJ cog 3(4h— o) lexp{ — BUGE(w)dy. (48)
(42)

Now one can readily see that the mean-field potential
Uik=3U ,cod 3(¢io+ thyo) ] +3U _cog 3(io— lﬂko)](-43) U,%ﬂ:(lﬁ) vanishes ifS = S]- (i#]#Kk), i.e., if the two other
superlattices are characterized by the same scalar order pa-
One notes that Eq:39) should be valid for ali #j (i, rameter In this case, the orientational distribution function
~1,2,3). It can be shown that there exist three different sof1’(¢) is isotropic and the corresponding order parameter
lutions of Eq.(39) which correspond to different phases.  S=0. The solutionsS =S;=S andS,=0 can be tested for
(1) o1= or= Yoz= 72+ (27/3)n. All three sublattices self-consistency by using the equations ®randS;,
are ordered in the same direction. Substituting this solution

into Egs.(41)—(43), one obtains the following expression for 1 ;
the mgan-field potentials: IeP S:Z_i cog 3(4— hio) Jlexp{ — BUGR(¥)}dy, (49

URE(4)=3(U_— U )cod 3(¢ — m/2)](S;+Sy), 1 |

(44 S= f cog 3(¢— jo) Jexp{— BUL(4)}dy,  (50)
i

wherei#j+#k. Here the orientational order paramet&s _

can be determined self-consistently after substitution of Eqswhere the mean-field potentialljsﬁ},)F andU(‘) are given by

(42) and (43) into Eq. (37). One notes that in this case, all Eq.(41). Substitutingy; = /6, ¢o;= —77/6 andSk 0 into

three superlattices are equivalent and thus the only solutioRBgs.(42) and(43), one obtains
is S;=S,=S53=S, where

1
S=c ~B(U.-U)S dy,
5= Zi cos 3 exp{—68(U_— U, )cos 3y}dy (45) zij c0s 3 expl — A( )Sjcos 3}dy o
0
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1 One notes that Eq(5) for the order paramete® has
S :ZJ cos 3pexp[—B(U,—U_)Scos 3ypdy. exactly the same mathematical form as H§8) and(45) for
! (52) the phase8 andA, respectively. The effective coupling con-
stants, however, are different for all those phases, and thus
It is interesting to note that Eq¢51) and (52) are com-  these phases may be stable in different regions of the general
pletely equivalent, i.e., they are transformed into each othef —U . —U_ phase diagram. The honeycomb phase is stable
under an exchange of the indiceandj. ThusS=S;=S,  forkgT<(U,—U_).
S=0 is indeed a self-consistent solution of E48)—(50),
where the order paramet8&ris given by the single equation V. CHIRAL ORDER PARAMETER OF THE

1 INHOMOGENEOUS ANISOTROPIC PHASE
S= ZJ cos 3yexp{—B(U,—U_)Scos3y}dy (53

As discussed above, the inhomogeneous orientationally
ordered phas8 presented in Fig. (b) is two-dimensionally
and where chiral. This means that it is not invariant under a reflection

with respect to a line parallel to the plane of the structure.
Z= f exp{—B(U, —U_)Scos 3/}dy. (54 One notes, however, that no 2D structure can be chiral in the
common three-dimensional sense because any 2D structure
According to Eq.(53), the phase transition into the aniso- is invariant under a reflection with respect to the plane of the
tropic tripod phase with three Supeﬂatﬁces occurd afT structure itself. In the 3D case, the chirality of a structure can
=2(U_—U,)/kB. The transition is of second order. The be characterized by the so-called “chirality index” or the
phase is stable s T<2(U_—U.), i.e., the coupling con- chiral order parameter which can be written in the general
stantU _ should be larger than the constant . One notes Mathematical fornj22,23
that the homogeneously ordered phAseéescribed above, is
stable ifkgT<2(U_—U ) and therefore the phasésandB A3p=€q,5,4Aap,y: (57
are complementary. For any fixed valuesf andU_,
these phases cannot occur simultaneously on the phase dihere the nonsymmetric tenséx, g ., characterizes the 3D
gram. structure anc, g, is the Levi-Civitatensor which is anti-

(3) This solution corresponds to the phaSein Fig. 1 ~ symmetric with respect to any two indices. The components
which has a “honeycomb” structure. In this case, the tripodof this tensor do not vanish if and only é# 5+ .
molecules on the superlatticeand] are aligned in opposite In the two-dimensional case, the chirality order parameter
directions, similar to the 2D chiral phagediscussed above. can generally be written as a coupling between the corre-
However, in the honeycomb phase, the directors of the twgponding second-rank tensors:
ordered superlattices are parallel to the axes of the underly-
ing hexagonal lattice, while in the 2D chiral phaBethey Azp= €4 pAap (58)
form an angle ofr/6 with respect to the axes of the lattice.

Now, using the same mathematical argument as in the devheree, g is the 2D unit antisymmetric tensor:
scription of the previous solution, it can be shown thiag

=m+2mk/3, jo=2mk/3 into Egs.(36), (37), and (30) €up= " €par Exy=1, (59
yields the following solutions for the scalar order parameters
of the three superlattice§=S;=S andS,=0, where wherea, B=x,y. One notes that the 2D tensey ; is related

1 to the Levi-Civitatensor: €, s=€, 5 ,€,, Where the unit
S= —J cos 3yexp{—B(U,+U_)Scos3y}dys (55  vector e is normal to the plane. Thus the sign of the 2D
z antisymmetric tensor and the sign of the 2D chiral index
depend on the choice of the direction of the normal to the
plane. However, if the 2D chiral structure is located at an
interface between two different media, the symmetry be-
Z= f expg — B(U. +U-)Scos 3ytdy. (56 tween+e and—eis broken and the whole system becomes
3D chiral. More information about 2D chirality indices can
Thus in the honeycomb phase, the third superlattice also ajpe found in Ref[12].
pears to be disordered while the other two superlattices are Anisotropic organic monolayers composed of nonchiral
characterized by the same scalar order paran®t€he di- molecules may become 2D chiral after a corresponding sym-
rectors of the two ordered superlattices point into oppositenetry breaking phase transitiqd3—18. The macroscopic
directions, similar to the pha$® In general, the honeycomb chirality of such systems is usually determined by different
phaseC is very similar to the phasB, but possesses a higher orientations of several ordering tensors or by the spontane-
symmetry because all directors are parallel to the axes of theus chiral orientational deformations. Recently, expressions
hexagonal lattice. As a result, the honeycomb phase appedia chiral order parameters for such systems have been pro-
to be nonchiral because it is invariant under a reflection wittposed by Selingeet al. [24,25. Using a similar approach,
respect to any line which contains a lattice site and is parallelve propose the following expression for the chiral order pa-
to one of the axes of the lattice. rameter of the phase:

and
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1

Ag=———
"IN,

Ej easRUD(E —tl) ), (60)

where the bracketé - -) denote the ensemble average over
the whole system, is the length of the elementary bond on y
the hexagonal lattice, arld, is the total number of pairs of - BRI a el G .
molecules in the system. Here the tenstf}, andt%). , / ’
which are given by Eq(6), specify the orientation of the
tripod moleculesi and j, respectively. The tensaR()) is ,
composed of the components of the intermolecular vector< ™7
rij=ri—r; and has the same mathematical structure given by
Eq. (6). The chiral order parametéyg is a 2D pseudoscalar AT
which changes sign under a reflection with respect to a line ,/ )
in the plane of the structure. Equati¢80) is also symmetric <777 no
with respect to an interchange of the indi¢eendj because
the tensoR(}) is odd inr;; . One notes that in a homoge-
neous system, the order paramédi@d) vanishes identically. FIG. 10. Three superlattices characteristic for the structBres
However, in the phasB the chiral order parameter is non- andC in Fig. 1. The vectork; specify the crystallographic direc-
zero because the translational symmetry has been broketions of the basic hexagonal lattice. The superlattices are defined by
and molecules andj may belong to different sublattices the vectord;.

with different tensor order parameters. In this paper, we con-

sider a model in which the centers of tripod molecules are Ag=£[sIN(3t0)S—siN(3tg) Si)], (64
located on the sites on the hexagonal lattice. In this case, all

intermolecular vectors; are fixed in space. Taking into con- \hereS, andS, are the scalar orientational order parameters
sideration only elementary bonds, i.e., the intermoleculapf syblattices 1 and 2, respectively, awgh, i, are the
vectors between the nearest neighbors, and using the propgjhgles between the axes of the corresponding tensor order
ties of tensorg6), Eq. (60) can be rewritten in the simple parameters and the axes of the hexagonal lattice. In our

.................................................................................

scalar form[26] Monte Carlo simulations, the angle, and ¢, are tem-
171 perature independent, and therefore the temperature variation
An=— | = SIN3(ti— ) 1= Sin 3(: — i , of the chiral order parameter is determined by that of the
B Ny \2 % {SInL3(i = dij) I = sinL3(4 = i) Iy orientational order parametefsandS,, which are presented

(61) in Fig. 7. In the ideal_ infinite phasB, l//|o:_— Yl 027_-r/6.
S,=S,=S and the chiral order parameter is proportional to
where the angleg;; ,#; specify the orientation of the tripod the unique orientational order parameSr
molecules andj, respectively, angle);; specifies the orien-
tation of the bon_d(se_e Sec. I). On the other hgind, the Ag(T)=1S(T). (65)
ensemble averaging in E¢51) can be performed directly in
the tensor form:

0.8
Ag= %eaﬁRgﬁy(<tIﬁ§y> - <t|;|357> + <t|;|;|57>)
=2 €agR%5(Ths,— Thsy), (62 .
whereT'B[Sy and T:(',,(;y are the tensor order parameters of the
sublattices “1” and “2,” respectively, which are given by the » 04-

general equatioil2) but may depend on different directors
n, andn, . The sublattice “3” is orientationally disordered in
the phasé and thereford j;, =0. The tensoR);, has the 02
same mathematical form as in E&) but it depends on the
components of the unit vectérin the direction of a crystal-

lographic axis of the hexagonal latti¢eee Fig. 10 0.0
sy = KaKgky = 3 (Ko0p,+Kgdo, tK,30p). (63 " 05 07 08 08 10
T/T
Taking into account thaRy s, T,s,=Sin 3¢y, where ¢y, is ¢
the angle between the vectdtsandn, the chiral order pa- FIG. 11. Temperature variation of the orientational order param-
rameter of the phase B can be written in the following simpleeterS of the phaseB obtained from Eqs(53) and(54). The transi-
form: tion temperaturdgT.=— (U, +U_)/2.
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For the mirror image of the phas the sign in Eq(65) is  part of the potential is mainly determined by a short-range
reversed. In the framework of the mean-field theory, the oristeric repulsion between long side chains of neighboring tri-
entational order paramet&(T) can be calculated numeri- pod molecules. Such chains may overlap for some particular
cally using Eqs(53) and(54). The temperature variation of relative orientations of two neighboring molecules, and the
S which determined the variation dfg, is presented in Fig. corresponding interaction energy should be strongly positive.
11. One notes that, in principle, the temperature variation ofrhis determines the positive sign of the corresponding cou-
the order parameter can be determined experimentally byjing constant, .
measuring the optical acti_vity on reflection from the mono- |, 5 2p system of tripod molecules on the hexagonal lat-
layer located at the solid-liquid interface. tice, the simplest orientational phase transition occurs if the
. One can readily see that the chiral _order parameter varg, g part of the interaction potenti@B4) is predominant. In
ishes for the nonchiral phase b?‘?a“$e in the phasg ¢ this case, the interaction potential is approximately the same
= m andyyo=0. Thus the transition into the phaecorre- ¢, i of nearest neighbors and the system undergoes the
sponds to lanonch|ral .translat|onal symmetry preak|ng: AS second-order transition from the orientationally disordered
discussed in Sec. 1V, in the phaBehree sublattices rapidly 7. . R
interchange their roles during the course of simulation. For {;(l |_sotr0|_3|c If the symmetry of _the lattice is lgnor_e)cto the
given sublattice, the anglé, jumps from + 7/6 to — 7/6 orle_znta_tlonally ord_ered 2D wipod phadsee Fig. la)],
and back, and therefore the chiral order parameter alternatw'ch is characterized by the threefold symmetry axis per-
in sign. This means that the initial nonchiral symmetry ispend|c_ular to the surface: One notes that this three_fold sym-
restored during the course of simulation. mgtry is lower thap the S|>_<fold symmetry Qf the lattice. Thg
orientational ordering of tripod molecules in such a phase is
characterized by the scalar order parameser(cos 3))
V1. DISCUSSION which is determined by the self-consistency equatié8)

In this paper, we have developed a mean-field theory 0yvhich is similar to the corresponding equation found in the

the transition between the isotropic phase and the orienttD Maier-Saupe theory27] that describes the isotropic-
tionally ordered phase composed of tripod molecules on thgematic phase transition on the_surface. At th.e same tlme, thg
flat surface. Such molecules, which are typical building unit§€nsor order parameter of the tripod phase, discussed in detail
of thermotropic liquid crystals in the bulk, possess a threein Sec. Il, is very much different from the one for the 2D
fold symmetry axis perpendicular to the flat core. The mol-nematic phase. This difference is determined by a difference
ecules are assumed to be located on the sites of the twé? point symmetry groups of the two phases. In the 2D nem-
dimensional hexagonal lattice which has been clearhatic phase, there exists only onenpolardirection of order-
observed experimentally in the self-assembled monolayerifig of long molecular axes, while in the 2D tripod phase one
formed by a series of discotic mesogenic molecules on &inds three equivalenpolar directions specified by three
pyrolithic graphite surfacgl1]. A simple model potential of equivalent director$,, I,, andl; (see Fig. 2
interaction between rigid tripod molecules has been derived The homogeneous tripod phase is expected to be stable
using only the molecular symmetry and taking into consid-when the side chains of the tripod molecules are sufficiently
eration that in the general case, any pair interaction potentiahort(i.e., when they are significantly shorter than the lattice
for two rigid molecules on the flat surface depends only orperiod. However, the experimental situation seems to be the
two angles which specify the orientation of these molecule®pposite[11] and therefore one cannot neglect the second
with respect to the intermolecular vector. As shown in Secpart of the interaction potential, which is determined by a
I, the simple analytical form of the model potential can be short-range repulsion between side chains.. As shown in Sec.
obtained by keeping the first two terms of the general expantV, the homogeneous tripod phase is unstablg if>U _ . In
sion. A similar potential has been used also in the theory ofhe latter case, there is a frustration in the system because, on
3D columnar ordering in the system of discotic molecules ofone hand, all molecules have a tendency to be parallel or
the same structur26). antiparallel (depending on the sign dff ). On the other
The model potential34) is a sum of two terms which hand, there is no such homogeneous orientation of tripod
represent different kinds of intermolecular interactions. Themolecules on the lattice which corresponds to a minimum of
first term depends only on the angle between the side chairthe total free energy because the side chains of some nearest
of the two neighboring molecules. This part of the potentialneighbors will always overlap. The free energy of such sys-
is not sensitive to the orientation of the two molecules withtem may decrease if the system of tripod molecules on the
respect to the intermolecular vector, and, therefore, it has thieexagonal lattice splits into three sublattices which are char-
same value for all pairs of nearest neighbors on the latticacterized by different values of the orientational order pa-
provided the angle between the side chains of the moleculaameter and different orientations of the director. This means
remains fixed. This term promotes parallel or antiparallel ori-that the system undergoes a phase transition with simulta-
entation of neighboring tripod molecules depending on theneous orientational and translational symmetry breaking. A
sign of the coupling constartd _ . By contrast, the second different type of such transition has recently been considered
term in Eq.(34) does depend on the relative orientation ofin Ref. [28]. One notes that in the present system, any two
the two molecules with respect to the intermolecular vectornearest neighbors belong to different sublattices. This en-
and thus the corresponding interaction energy may be differables the system to avoid frustration provided different sub-
ent for different pairs of nearest neighbors on the lattice. Thidattices have different orientations of the director.
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As shown in Sec. 1V, the actual values of the orientationalcoupling constantd) , and U_, which have been taken
order parameters for three different sublattices and the cowithin the stability range for each phase specified by the
responding angles which specify the orientations of the threéheory. It is interesting to note that in the phases with a
directors can be found by minimization of the total free en-supramolecular structure, the three different sublattices inter-
ergy. This minimization procedure is different from the onechange during the course of simulation. This is related to the
used in the conventional molecular theory of nematic liquidfact that initially all lattice sites are equivalent and all nearest
crystals where the free energy does not depend on the orieneighbors interact via the same pair potential. The infinite 2D
tation of the director which is assumed to be uniformhexagonal lattice can be split into three equivalent sublattices
throughout the systerfin the ideal system without bound- presented in Fig. 2 by three possible ways. The free energies
aries. In such a case, the free energy is minimized only withof these three configurations are the same and therefore all
respect to the scalar nematic order parameter which satisfigree states of the whole system should be reached during a
a self-consistency equation. By contrast, in the system ofyfficiently long Monte Carlo run.
tripod molecules considered in this paper, the orientational |y conclusion, we note that it has been possible to derive
order parameters of the three sublattices are determined byzgsimple molecular model of the experimentally observed 2D
system of three equations which depend on the angles bghjral phase with rather untrivial supramolecular structure.
tween directors in different sublattices. One notes that in thghe model is based on a mean-field theory and on a simple
simple mean-field approximation, minimization of the total jnteraction potential which has been derived using only the
free energy yields three solutions which correspond to thgymmetry of a tripod disklike molecule. The same phase has
three phases presented in Fig. 1. The first solution corregiso been obtained in Monte Carlo simulations using the
sponds to the uniform orientationally ordered phase withousame model interaction potential. This means that the 2D
sublattices, while the second solution describes the ordereghiral tripod phase observed in R¢lL1] should be rather
phase composed of three sublattices which exactly corre&xommon and may also be observed with other substances
sponds to the 2D chiral structure of disklike mesogenic mol-ang on other types of surfaces, provided the molecular sym-

ecules on the graphite substrate, observed in the experimeg{etry remains the same. More experiments are needed to
[11]. In such a phase, one sublattice is orientationally disorconfirm this prediction.

dered Wh|le the two Other Sublattices are Characterized by the It iS interesting to note that a Sim”ar phase has been Ob_
same degree of orderir@e., the scalar order parameters of served in the bulk liquid crystal composed of disklike mol-
the two sublattices are equiaind opposite directions of or- ecyles[6,7]. In this liquid crystal phase, the molecules form
dering (i.e., the direCtOI’S Of the two Sub|attiCES are antiparal'co|umns W|th the he"ca| intraco'umnar structure and the
lel). In addition, the angle between the directors and a crysshort-range hexagonal positional order of the columns. Ac-
tallographic axis of the underlying hexagonal lattice exactlycording to Ref.[7], the intercolumn separation is smaller
corresponds to the experimental findings. This nonzero angighan the diameter of the disklike molecules with fully ex-
between the direction of ordering and axes of the hexagonaknded chains, and therefore the uniform orientationally or-
lattice determines the 2D chirality of the tripod phase whichdered columnar phase should also be frustrated. As a result,
does not have any symmetry line within the plane. In thisthe supramolecular structure is observed in which some col-
phase, the molecules which belong to the orientationally disymns are characterized by random helical phases of the mol-
ordered sublattice are surrounded by six ordered tripod molcyles and are displaced in the vertical direction with respect
ecules which split into three pairs with antiparallel averageg the surrounding six columns which are all at the same
Orientation. The eXiStence Of th|S phase iS mainly determineﬁeight and have a Sing|e rotationa' degree of freedom_ The
by short-range repulsion between long chains of neighboringnalysis of these 2D amd 3D phases raises a question of the
tripod molecules, and the mean-field theory indicates that thgs|ative role of frustration and the positional and orienta-
phase can be stable onlylf, >U_. Comparing the stabil- tional ordering. It is not obvious how the frustration will
ity conditions for the 2D chiral phase and for the simplemanifest itself in a fluid 2D phase formed by tripod mol-
uniform orientationally ordered phase, one concludes thagcyles without any lattice structure. In this case, the mol-
these two phases cannot be stable simultaneously. This m@¢yles cannot “escape into the third dimension” to avoid
explain why the homogeneously ordered phase has not begfystration like in the bulk columnar phase. On the other
observed in the experiment. The 2D chirality of the phBse hand, the formation of a regular supramolecular structure is
can be described by the chiral order paramer which is congiso hardly possible. This problem may be interesting from

sidered in Sec. V. The chiral order parameter possesses Offre fundamental point of view and is currently under inves-
posite signs for the two enantiomeric forms of the phise tigation.

and it vanishes identically for the nonchiral ph&w/hich is
characterized by a nonchiral translational symmetry break-
ing. The temperature variation of the chiral order parameter ACKNOWLEDGMENTS
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